Skip to main content
Log in

Protective Effects of Curcumin against Acetamiprid-Induced Neurotoxicity in Male Albino Rats

  • BIOCHEMISTRY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Environmental contaminants such as industrial and household chemicals, pesticides, fertilizers, heavy metals, and ionizing radiation are the primary causes of oxidative stress. Acetamiprid (ACMP) is a pesticide, belongs to the neonicotinoid family. Curcumin (Cur) is a brilliant yellow chemical component found in turmeric root which has anti-inflammatory, antioxidant, and anti-tumor characteristics. It has been widely utilized to treat or prevent neurological illnesses as both a herbal medication and a food additive. The main goal of this study is to examine the protective role of curcumin (100 mg/kg body weight) on the neurotoxicity caused by an environmental contaminant, acetamiprid (20 mg/kg body weight). We used five groups of male albinos rats: each with six animals. The first was a control group (saline 0.9%), the second was a vehicle group (DMSO 33%), the third was a curcumin group, the fourth group was given an acetamiprid only, and the fifth was given both curcumin and acetamiprid. The considerable reduction in the levels of glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), and Acetylcholinesterase (AchE) in the brain cortex, as well as the reduction in dopamine and serotonin neurotransmitters in the hippocampus, indicating that acetamiprid has an overall pro-oxidant effect. On the other hand, we noticed a rise in lipid peroxidation (LPO), and DNA fragmentation, in the cerebral cortex. Our findings revealed that oral curcumin supplementation improved biochemical parameters in brain of rats treated with acetamiprid. We conclude that curcumin may play a role as effective antioxidant in reducing the imbalance between the formation of free radicals, and the body’s antioxidant systems, that result in reducing the severity of oxidative stress induced by acetamiprid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Abdollahi, M., Ranjbar, A., Shadnia, A., Nikfar, S., and Rezaie, A., Pesticides and oxidative stress: a review, Med. Sci. Monit., 2004, vol. 10, pp. 141–147.

    Google Scholar 

  2. Abolaji, A.O., Fasae, K.D., Iwezor, C.E., Aschner, M., and Farombi, O.E., Curcumin attenuates copper-induced oxidative stress and neurotoxicity in Drosophila melanogaster, Toxicol. Rep., 2020, vol. 7, pp. 261–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Adams, B.K., Cai, J., Armstrong, J., Herold, M., Lu, Y.J., Sun, A., Snyder, J.P., Liotta, D.C., Jones, D.P., and Shoji, M., EF24, a novel synthetic curcumin analog, induces apoptosis in cancer cells via a redox-dependent mechanism, Anticancer Drugs, 2005, vol. 16, pp. 263–275.

    Article  CAS  PubMed  Google Scholar 

  4. Aggarwal, B.B. and Sung, B., Pharmacological basis for the role of curcumin in chronic diseases: an age old spice with modern targets, Trends Pharmacol. Sci., 2009, vol. 30, pp. 85–94.

    Article  CAS  PubMed  Google Scholar 

  5. Akaber, T.K., Ahmed, A.H., Hala, M.I.M., and Nouran, M.E., Oxidative stress and biochemical changes induced by thiamethoxam and acetamiprid insecticides in rats, World J. Pharm. Pharm. Sci., 2016, vol. 5, pp. 44–60.

    Google Scholar 

  6. Akinyemi, A.J., Oboh, G., Ogunsuyi, O., Abolaji, A.O., and Udofia, A., Curcumin-supplemented diets improve antioxidant enzymes and alter acetylcholinesterase genes expression level in D. melanogaster model, Metab. Brain Dis., 2018, vol. 33, pp. 369–375.

    Article  CAS  PubMed  Google Scholar 

  7. Ayodele, J.A., Ganiyu, O., Adewale, O. F.,Babawale, P.O., and Seun, A., Curcumin administration suppress acetylcholinesterase gene expression in cadmium treated rats, Neurotoxicology, 2017, vol. 10, pp. 21–28.

    Google Scholar 

  8. Bahar, U.K., Yağmur Emre, A., Tugce, B., Sevgi, B., Alper, O., and Gul Ozhan, Toxic effects of subchronic oral acetamiprid exposure in rats, Toxicol. Industr. Health, 2019, Vol. 35, pp. 679–687.

    Article  Google Scholar 

  9. Bear, M.F., Connors, B.W., and Paradiso, M.A., Neuroscience: Exploring the Brain, New York, 2016, vol. 7, 4th ed., pp. 12–23.

  10. Beers, R.F. and Sizer, I.W., A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase, J. Biol. Chem., 1952, vol. 195, pp. 133–140.

    Article  CAS  PubMed  Google Scholar 

  11. Bhutada, P., Mundhada, Y., Bansod, K., Tawari, S., Patil, S., Dixit, P., Umathe, S., and Mundhada, D., Protection of cholinergic and antioxidant system contributes to the effect of berberine ameliorating memory dysfunction in rat model of streptozotocin-induced diabetes, Behav. Brain Res., 2011, vol. 220, no. 1, pp. 30–41.

    Article  CAS  PubMed  Google Scholar 

  12. Bourbia, S., Evaluation of toxicity of pesticide mixtures on soil contamination bioindicator Helix aspersa, Thesis PhD, Annaba University, 2013, pp. 10–17.

  13. Ceyhan, H., Fatih, K., Ezgi, K., Yakup, K., and Gungor, K., Effects of curcumin and boric acid against neurodegenerative damage induced by amyloid beta, Biol. Trace Element Res., 2020, vol. 99, no. 10, pp. 3793–3800.

    Google Scholar 

  14. Chang, X., Wang, L., Li, J., and Wu, D., Analysis of anti-depressant potential of curcumin against depression induced male albino Wistar rats, Brain Res., 2016, vol. 16, pp. 19–25.

    Google Scholar 

  15. Chelikani, P., Fita, I., and Loewen, P.C., Diversity of structures and properties among catalases, J. Cell Mol. Life Sci., 2004, vol. 61, pp. 192–208.

    Article  CAS  Google Scholar 

  16. Cheng, Y.F., Guo, L., Xie, Y.S., Liu, Y.S., Zhang, J., Wu, Q.W., and Li, J.M., Curcumin rescues aging-related loss of hippocampal synapse input specificity of long term potentiation in mice, Neurochem. Res., 2013, vol. 38, pp. 98–107.

    Article  CAS  PubMed  Google Scholar 

  17. Cole, G.M., Teter, B., and Frautschy, S.A., Neuroprotective effects of curcumin, in The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease, New York: Springer, 2007, pp. 197–212.

    Google Scholar 

  18. Darvesh, A.S., Carroll, R.T., Bishayee, A., Novotny, N.A., Geldenhuys, W.J., and Van der Schyf, C.J., Curcumin and neurodegenerative diseases: a perspective, Expert Opin. Invest. Drugs, 2012, vol. 21, pp. 1123–1140.

    Article  CAS  Google Scholar 

  19. Devan, R.K.S., Mishra, A., and Prabu, P.C., Sub-chronic oral toxicity of acetamiprid in Wistar rats, Toxicol. Environ. Chem., 2017, vol. 97, pp. 1236–1252.

    Article  Google Scholar 

  20. Ellman, G.L., Courtney, V., and Andres, R.M., A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacol., 1961, vol. 7, pp. 88–95.

    Article  CAS  PubMed  Google Scholar 

  21. Emna, A., Intidhar, B., Salema, C., and Salwa, A., Acetamiprid, a neonicotinoid insecticide, induced cytotoxicity and genotoxicity in PC12 cells, Toxicol. Mechanisms Methods, 2019, vol. 1537, pp. 6516–6524.

    Google Scholar 

  22. Farkhondeh, T., Samarghandian, S., and Samini, F., Antidotal effects of curcumin against neurotoxic agents, an updated review, Asian Pac. J. Trop. Med., 2016, vol. 9, no. 10, pp. 947–953.

    Article  CAS  PubMed  Google Scholar 

  23. Fernandez, V.C., Sancho, E., Ferando, M.D., and Andreu, M.E., Thiobencarb induced changes in acetylcholinesterase activity of the fish Anguilla anguilla, Pest. Biochem. Physiol., 2002, vol. 72, pp. 55–63.

    Article  Google Scholar 

  24. Gabe, M., Histological Techniques, New York: Springer-Verlag/Masson, 1976.

    Book  Google Scholar 

  25. Gasmi, S., Rouabhi, R., Kebieche, M., Salmi, A., Boussekine, S., Toualbia, N., Taib, C., Henine, S., Bouteraa, Z., and Djabri, B., Neurotoxicity of acetamiprid in male albino rats and the opposite effect of quercetin, Biotechnol. Ind. J., 2016, vol. 12, pp. 7–13.

    Google Scholar 

  26. Huang, H.C., Xu, K., and Jiang, Z.F., Curcumin-mediated neuroprotection against amyloid-β-induced mitochondrial dysfunction involves the inhibit1ion of GSK-3β, J. Alzheimers Dis., 2012, vol. 32, pp. 981–996.

    Article  CAS  PubMed  Google Scholar 

  27. Ines, B.D., Alya, A., Raoudha, D., Ines, R., Yosra, D., Yassin, B., Mohamed, M.L., Amel, E., Raja, M., Saloua, F., and Asma, G., Neuroprotective effects of curcumin against acetamiprid-induced neurotoxicity and oxidative stress in the developing male rat cerebellum: biochemical, histological, and behavioral changes, Environ. Sci. Pollut. Res., 2017, vol. 35, pp. 27515–27524.

    Google Scholar 

  28. Jagetia, G. and Rajanikant, G., Curcumin stimulates the antioxidant mechanisms in mouse skin exposed to fractionated γ-irradiation, Antioxidants, 2015 vol. 4, no. 25.

  29. Kapoor, U., Srivastava, M.K., Bhardwaj, S., and Srivastava, L.P., Effect of imidacloprid on antioxidant enzymes and lipid peroxidation in female rats to derive its No Observed Effect Level (NOEL), J. Toxicol. Sci., 2010, vol. 35, pp. 577–581.

    Article  CAS  PubMed  Google Scholar 

  30. Kar, F., Hacioglu, C., Uslu, S., and Kanbak, G., Curcumin acts as post-protective effects on rat hippocampal synaptosomes in a neuronal model of aluminum-induced toxicity, Neurochem. Res., 2019, vol. 44, pp. 2020–2029.

    Article  CAS  PubMed  Google Scholar 

  31. Kebieche, M., Lakroun, Z., Lahouel, M., Bouayed, J., Meraihi, Z., and Souliman, R., Evaluation of epirubicin-induced acute oxidative stress toxicity in rat liver cells and mitochondria, and the prevention of toxicity through quercetin administration, Exp. Toxicol. Pathol., 2009, vol. 61, pp. 161–167.

    Article  CAS  PubMed  Google Scholar 

  32. Khan, S.M., Sobti, R.C., and Kataria, L., Pesticide-induced alteration in mice hepato-oxidative status and protective effects of black tea extract, Clin. Chem. Acta, 2005, vol. 358, pp. 131–138.

    Article  CAS  Google Scholar 

  33. Khansari, N. and Shakiba, Y., Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer, Recent Patents Inflamm. Allergy Drug Discov., 2009, vol. 3, no. 1, pp. 73–80.

    Article  CAS  Google Scholar 

  34. Kovacic, P. and Somanathan, R., Unifying mechanism for eye toxicity: electron transfer, reactive oxygen species, antioxidant benefits, cell signaling and cell membranes, Cell Membr. Free Radical Res., 2008.

  35. Kulkarni, S.K., Bhutani, M.K., and Bishnoi, M., Antidepressant activity of curcumin: involvement of serotonin and dopamine system, Psychopharmacology (Berl.), 2008, vol. 201, pp. 435–442.

    Article  CAS  PubMed  Google Scholar 

  36. Kurita-Ochiai, T., Fukushima, K., and Ochiai, K., Lipopolysaccharide stimulates butyric acid-induced apoptosis in human peripheral blood mononuclear cells, Infect. Immun., 1999, vol. 67, no. 1, pp. 22–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lahouel, A., Kebieche, M., Lakroun, Z., Rouabhi, R., Fetoui, H., Chtourou, Y., Djamila, Z., and Soulimani, R., Neurobehavioral deficits and brain oxidative stress induced by chronic low dose exposure of persistent organic pollutants mixture in adult female rat, Environ. Sci. Pollut. Res., 2016, vol. 23, pp. 19030–19040.

    Article  CAS  Google Scholar 

  38. Lakroun, Z., Kebieche, M., Lahouel, A., Zama, D., and Soulimani, R., Oxidative stress and brain mitochondria swelling induced by endosulfan and protective role of quercetin in rat, Environ. Sci. Pollut. Res., 2015, vol. 10, pp. 7776–7781.

    Article  Google Scholar 

  39. Lane, R.M., Kivipelto, M., and Greig, N.H., Acetylcholinesterase and its inhibition in Alzheimer disease, Clin. Neuropharmacol., 2004, vol. 27. pp. 141–149.

    Article  CAS  PubMed  Google Scholar 

  40. Lee, B. and Lee, H., Systemic administration of curcumin affect anxiety-related behaviors in a rat model of posttraumatic stress disorder via activation of serotonergic systems, Evidence-Based Complementary Altern. Med., 2018, pp. 1–12.

    Book  Google Scholar 

  41. Loilier, M., LeBoisselier, R., and Fradin, S., Syndrome sérotoninergique après intoxication à la MDMA, Une Drogue de Synthèsetoujoursd’actualité, 2016, vol. 28.

  42. Lonare, M., Kumar, M., Raut, S., Badgujar, P., Doltade, S., and Telang, A., Evaluation of imidacloprid-induced neurotoxicity in male rats: a protective effect of curcumin, Neurochem. Int., 2014, vol, 78. pp. 122–129.

    Article  CAS  PubMed  Google Scholar 

  43. Lonare, M., Kumar, M., Raut, S., More, A., Doltade, S., Badgujar, P., and Telang, A., Evaluation of ameliorative effect of curcumin on imidacloprid-induced male reproductive toxicity in Wistar rats, Environ. Toxicol., 2015, vol. 31, no. 10, pp. 1250–1263.

    Article  PubMed  Google Scholar 

  44. Madiha, S. and Haider, S., Curcumin restores rotenone induced depressive-like symptoms in animal model of neurotoxicity: assessment by social interaction test and sucrose preference test, Metab. Brain Dis., 2019, vol. 34, pp. 297–308.

    Article  CAS  PubMed  Google Scholar 

  45. Maienfisch, P., Huerlimann, H., Rindlisbacher, A., Gsell, L., Dettwiler, H., and Haettenschwiler, J., The discovery of thiamethoxam: a second generation neonicotinoid, Pest Manage. Sci., 2001, vol. 57, pp. 165–176.

    Article  CAS  Google Scholar 

  46. Marzban, A., Seyedalipour, B., and Mianabady, M., Biochemical, toxicological, and histopathological outcome in rat brain following treatment with NiO and NiO nanoparticles, Biol. Trace. Elem., 2020.

    Book  Google Scholar 

  47. Misra, H.P. and Fridovich, I., The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase, J. Biol. Chem., 1972, vol. 247, no. 10, pp. 3170–3185.

    Article  CAS  PubMed  Google Scholar 

  48. Mohammed, H.S., Khadrawy, Y.A., El-Sherbini, T.M., and Amer, H.M., Electrocortical and biochemical evaluation of antidepressant efficacy of formulated nanocurcumin, Appl. Biochem. Biotechnol., 2019, vol. 187, pp. 1096–1112.

    Article  CAS  PubMed  Google Scholar 

  49. Morteza, G.B., Mohadeseh, N., Bagher, P., Saber, G., Mojtaba, K., Iraj, M., and Abbas, J., Neurological effects of long-term exposure to low doses of pesticides mixtures in male rats: biochemical, histological, and neurobehavioral evaluations, Chemosphere, 2020, vol. 128.

  50. Motaghinejad, M., Motevalian, M., and Ebrahimzadeh, A., Reduction of methylphenidate induced anxiety, depression and cognition impairment by various doses of venlafaxine in rat, Int. J. Prev. Med., 2015, vol. 4, no. 6.

  51. Mythri, R.B. and Bharath, M.M., Curcumin: a potential neuroprotective agent in Parkinson’s disease, Curr. Pharm. Des., 2012, vol. 18, pp. 91–99.

    Article  CAS  PubMed  Google Scholar 

  52. Nampoothiri, M., John, J., Kumar, N., Mudgal, J., Nampurath, G.K., and Chamallamudi, M.R., Modulatory role of simvastatin against aluminium chloride-induced behavioural and biochemical changes in rats, Behav. Neurol., 2015, p. 210169.

  53. Naqvi, F., Saleem, S., Batool, Z., Sadir, S., and Tabassum, S., Curcumin lessens unpredictable chronic mild stress-induced depression and memory deficits by modulating oxidative stress and cholinergic activity, Pak. J. Pharm. Sci., 2019, vol. 32, pp. 893–900.

    Google Scholar 

  54. Nasuti, C., Gabbianelli, R., Falcioni, M., Stefano, A., Sozio, P., and Cantalamessa, F., Dopaminergic system modulation behavioral changes and oxidative stress after neonatal administration of pyrethroids, Toxicology, 2007, vol. 229, pp. 194–205.

    Article  CAS  PubMed  Google Scholar 

  55. Nazanin, K. and Bagher, S., Antioxidant, histopathological and biochemical outcomes of short-term exposure to acetamiprid in liver and brain of rat: the protective role of N-acetylcysteine and S-methylcysteine, Saudi Pharm. J., 2021, vol. 29, no. 3, pp. 280–289.

    Article  Google Scholar 

  56. Ono, K., Yoshiike, Y., Takashima, A., Hasegawa, K., Naiki, H., and Yamada, M., Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease, J. Neurochem., 2003, vol. 87, pp. 172–181.

    Article  CAS  PubMed  Google Scholar 

  57. Ono, K., Hamaguchi, T., Naiki, H., and Yamada, M., Anti-amyloidogenic effects of antioxidants: implications for the prevention and therapeutics of Alzheimer’s disease, Biochim. Biophys. Acta, 2006, vol. 1762, pp. 575–586.

    Article  CAS  PubMed  Google Scholar 

  58. Ohkawa, H., Ohishi, N., and Yagi, K., Assay for lipid peroxides inanimal tissues by thiobarbituric acid reaction, Anal. Biochem., 1979, vol. 95, pp. 351–358.

    Article  CAS  PubMed  Google Scholar 

  59. Oyetayo, B.O., Abolaji, A.O., Fasae, K.D., and Aderibigbe, A., Ameliorative role of diets fortified with Curcumin in a Drosophila melanogaster model of aluminum chloride-induced neurotoxicity, J. Funct. Foods, 2020, vol. 71, p. 104035.

    Article  CAS  Google Scholar 

  60. Palmer, M.J., Moffat, C., Saranzewa, N., Harvey, J., Wright, G.A., and Connolly, C.N., Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees, Nat. Commun., 2013, vol. 4.

  61. Pan, R., Qiu, S., Lu, D.X., and Dong, J., Curcumin improves learning and memory ability and its neuroprotective mechanism in mice, Chin. Med. J., 2013, vol. 121, pp. 832–839.

    Article  Google Scholar 

  62. Pasteur, L., Lamala die d’Alzheimer: intérêtdes molecules d’origine naturelle, Thèse d’exerciceen Pharmacie, bibliothèque de l’UPS, Paul Sabatier: Université Toulouse III, 2013.

  63. Preud’homme, V., Milla, S., Gillardin, V., De Pauw, E., Denoël, M., and Kestemont, P., Effects of low dose endosulfan exposure on brain neurotransmitter levels in the African clawed frog Xenopus laevis, Chemosphere, 2015, vol. 120, pp. 357–364.

    Article  PubMed  Google Scholar 

  64. Qi, X.J., Liu, X.Y., Tang, L.M.Y., Li, P.F., Qiu, F., and Yang, A.H., Antidepressant effect of curcumin-loaded guanidine-chitosan thermosensitive hydrogel by nasal delivery, Pharm. Dev. Technol., 2020, vol. 25, pp. 316–325.

    Article  CAS  PubMed  Google Scholar 

  65. Rai, B., Kaur, J., and Jacobs, R. Possible action mechanism for curcumin in pre-cancerous lesions based on serum and salivary markers of oxidative stress, J. Oral Sci., 2010, vol. 52, pp. 251–256.

    Article  PubMed  Google Scholar 

  66. Rani, V., Deep, G., Singh, R.K., Palle, K., and Yadav, U.C., Oxidative stress and metabolic disorders: pathogenesis and therapeutic strategies, Life Sci., 2016, vol. 148, pp. 183–193.

    Article  CAS  PubMed  Google Scholar 

  67. Reeta, K.H., Mehla, J., and Gupta, Y.K., Curcumin is protective against phenytoin-induced cognitive impairment and oxidative stress in rats, Brain Res., 2009, vol. 1301, pp. 52–60.

    Article  CAS  PubMed  Google Scholar 

  68. Sagar, D., Milindmitra, L., Sachin, R., andAvinash, T., Evaluation of acetamiprid mediated oxidative stress and pathological changes in male rats: ameliorative effect of curcumin, Natl. Acad. Sci., 2017, vol. 89, no. 1, pp. 191–199.

    Google Scholar 

  69. Salim, G., Smail, C., Zhora, L., Rachid, R., Chouaib, T., Mohamed, K., and Rachid, S., Neuronal apoptosis and imbalance of neurotransmitters induced by acetamiprid in rats, Toxicol. Environ. Health Sci., 2019, vol. 11, no. 4, pp. 305–311.

    Article  Google Scholar 

  70. Salim, G., Neurotransmission dysfunction by mixture of pesticides and preventive effects of quercetin on brain, hippocampus and striatum in rats, Toxicol. Environ. Health Sci., 2020, vol. 12, pp. 203–212.

    Article  Google Scholar 

  71. Samarghandian, S., Azimi-Nezhad, M., Farkhondeh, T., and Samini, F., Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney, Biomed. Pharmacother., 2017, vol. 87, pp. 223–229.

    Article  CAS  PubMed  Google Scholar 

  72. Sanyal, D., Chakma, D., and Alam, S., Persistence of a neonicotinoid insecticide, acetamiprid on chili (Capsicum annum L.), Bull. Environ. Contam. Toxicol., 2008, vol. 81, pp. 365–368.

    Article  PubMed  Google Scholar 

  73. Sauer, E., Liver delta-aminolevulinate dehydratase activity is inhibited by neonicotinoids and restored by antioxidants agents, Environ. Res. Public Health, 2014, vol. 11, no. 11, pp. 11676–11690.

    Article  CAS  Google Scholar 

  74. Schloss, P. and Henm, F.A., New insights into the mechanisms of antidepressant therapy, Pharmacol. Ther., 2004, vol. 102, pp. 47–60.

    Article  CAS  PubMed  Google Scholar 

  75. Sharma, Y., Bashir, S., and Irshad, M., Effects of acute dimethoate administration on antioxidant status of liver and brain of experimental rats, Toxicology, 2005, vol. 206, pp. 49–57.

    Article  CAS  PubMed  Google Scholar 

  76. Shen, L. and Ji, H.F., The pharmacology of curcumin: Is it the degradation products?, Trends Mol. Med., 2012, vol. 18, pp. 138–144.

    Article  CAS  PubMed  Google Scholar 

  77. Shojaii, A., Motaghinejad, M., Norouzi, S., and Motevalian, M., Evaluation of anti-inflammatory and analgesic activity of the extract and fractions of Astragalus hamosus in animal models, Iran. J. Pharm. Res., 2015, vol. 14, pp. 263–269.

    PubMed  PubMed Central  Google Scholar 

  78. Singh, S., Kaur, S., and Budhiraja, R.D., Chlorpyrifos induced oxidative stress in rat’s brain and protective effect of grape seed extract, J. Phytopharmacol., 2013, vol. 2, pp. 26–33.

    Article  Google Scholar 

  79. Tang, H., Lu, D., Pan, R., Qin, R., Xiong, H., and Dong, J., Curcumin improves spatial memory impairment induced by human immunodeficiency virus type 1 glycoprotein 120 V3 loop peptide in rats, Life Sci., 2009, vol. 85, pp. 1–10.

    Article  CAS  PubMed  Google Scholar 

  80. Testud, F., Insecticides néonicotinoïdes. EMC-Pathologie professionnelle et de l’environnement, EMC Toxicol. Pathol., 2014, vol. 9, pp. 1–6.

    Google Scholar 

  81. Tian, Y.W.A., Colorimetric detection method of pesticide acetamiprid by fine-tuning aptamer length, Anal. Biochem., 2016, vol. 513, pp. 87–92.

    Article  CAS  PubMed  Google Scholar 

  82. Wang, R., Li, Y.B., Li, Y.H., Xu, Y., Wu, H.L., and Li, X.J., Curcumin protects against glutamate excitotoxicity in rat cerebral cortical neurons by increasing brain-derived neurotrophic factor level and activating TrkB, Brain Res., 2008, vol. 1210, pp. 84–91.

    Article  CAS  PubMed  Google Scholar 

  83. Wang, X., Anadon, A., Wu, Q., Qiao, F., Ares, I., Martínez-Larranaga, M., Yuan, Z., and María-Aranzazu Martínez, Mechanism of neonicotinoid toxicity: impact on oxidative stress and metabolism, Annu. Rev. Pharmacol. Toxicol., 2017, vol. 58, pp. 471–507.

    Article  PubMed  Google Scholar 

  84. Wei, W., Qiuying, D., Wenbo, J., Yue, W., Yingying, C., Tianshu, H., and Changhao, S., Dichloroacetic acid-induced dysfunction in rat hippocampus and the protective effect of curcumin, Metab. Brain Dis., 2021, vol. 36, pp. 545–556.

    Article  CAS  PubMed  Google Scholar 

  85. Weidinger, A. and Kozlov, A.V., Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction, Biomolecules, 2015, vol. 5, pp. 472–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xu, Y., Ku, B.S., Yao, H.Y., Lin, Y.H., Ma, X., Zhang, Y.H., and Li, X.J., The effects of curcumin on depressive-like behaviors in mice, Eur. J. Pharmacol., 2005a, vol. 518, pp. 40–46.

    Article  CAS  PubMed  Google Scholar 

  87. Xu, Y., Ku, B.S., Yao, H.Y., Lin, Y.H., Ma, X., Zhang, Y.H., and Li, X.J., Antidepressant effects of curcumin in the forced swimming test and olfactory bulbactomy models of depression in rats, Pharmacol. Biochem. Behav., 2005b, vol. 82, pp. 200–206.

    Article  CAS  PubMed  Google Scholar 

  88. Yang, H.Y. and Lee, T.H., Antioxidant enzymes as redox-based biomarkers: a brief review, BMB Rep., 2015, vol. 48, pp. 2–8.

    Article  Google Scholar 

  89. Yang, L., Calingasan, N.Y., Chen, J., Ley, J.J., Becker, D.A., and Beal, M.F., Anovelazulenylnitrone antioxidant protects against MPTP and 3-nitropropionic acid neurotoxicities, Exp. Neurol., 2005, vol. 191, pp. 86–93.

    Article  CAS  PubMed  Google Scholar 

  90. Yasmina, A., Hesham, H.M., and Wafaa, A.M., Imidacloprid impacts on neurobehavioral performance, oxidative stress, and apoptotic events in the brain of adolescent and adult rats, Food Saf. Toxicol., 2018, vol. 66, no. 51, pp. 13513–13524.

    Google Scholar 

  91. Yasser, A.K., Mayada, M.E., Safwa, M.S., Hussein, G.S., and Eman, N.H., Effect of curcumin nanoparticles on the cisplatin induced neurotoxicity in rat, Drug Chem. Toxicol., 2018, vol. 42, no. 2, pp. 194–202.

    Google Scholar 

  92. Yohn, S.E., Gorka, D., Mistry, A., Collins, S., Qian, E., and Correa, M., Oral ingestion and intraventricular injection of curcumin attenuates the effort-related effects of the VMAT-2 inhibitor tetrabenazine: implications for motivational symptoms of depression, J. Nat. Prod., 2017, vol. 80, pp. 2839–2844.

    Article  CAS  PubMed  Google Scholar 

  93. Zhao, J., Yu, S., Zheng, W., Feng, G., Luo, G., Wang, L., and Zhao, Y., Curcumin improves outcomes and attenuates focal cerebral ischemic injury via antiapoptotic mechanisms in rats, Neurochem. Res., 2010, vol. 35, pp. 374–379.

    Article  CAS  PubMed  Google Scholar 

  94. Zhou, F., Sun, W., and Zhao, M., Controlled formation of emulsion gels stabilized by salted myofibrillar protein under malondialdehyde (MDA)-induced oxidative stress, J. Agric. Food Chem., 2015, vol. 63, pp. 3766–3777.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeinab Mohamed.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This is done in accordance with a standard operating procedure that has been approved by the Animal Use and Care Committee at Aswan University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeinab Mohamed, El-Kader, A.EK., Salah-Eldin, AE. et al. Protective Effects of Curcumin against Acetamiprid-Induced Neurotoxicity in Male Albino Rats. Biol Bull Russ Acad Sci 50, 509–521 (2023). https://doi.org/10.1134/S1062359022602609

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359022602609

Keywords:

Navigation