Skip to main content
Log in

Herbicide Pretilachlor Induces Oxidative Stress in Freshwater Fish Clarias batrachus

  • ECOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The present study has been carried out in C. batrachus to evaluate the oxidative stress induced by herbicide pretilachlor through analysing level of lipid peroxidation (LPO) and activities of different antioxidant enzymes in liver tissue. Fish were exposed to different sub lethal test concentrations of pretilachlor based on 96 h LC50 value. The durations of exposure were 30, 45 and 60 days. Herbicide concentration and exposure duration dependent changes in the level of lipid peroxidation and antioxidant enzyme activities were observed. Maximum level of LPO was observed in fish exposed to maximum test concentration of herbicide at all duration of exposure. For a particular test concentration the maximum LPO was seen at 45 days which was followed by decrease at 60 days of exposure. In a similar way, activities of Superoxide dismutase (SOD) and catalase (CAT) increases with increasing duration of exposure initially and then decreases. No significant changes in GR activity was observed because GSH: GSSG ratio is more resistant to exposure of pretilachlor. Results clearly indicated that herbicide pretilachlor changes the antioxidant status of fish therefore its excessive and improper use in agricultural fields must be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ahmad, I. and Ahmad, M., Fresh water fish, Channa punctatus as a model for pendimethalin genotoxicity testing: a new approach toward aquatic environmental contaminants, Environ. Toxicol., 2016, vol. 31, pp. 1520–1529.

    CAS  PubMed  Google Scholar 

  2. Akhgari, M., Abdollahi, M., Kebryaeezadeh, A., Hosseini, R., and Sabzevari, O., Biochemical evidence for free radical-induced lipid peroxidation as a mechanism for subchronic toxicity of malathion in blood and liver of rats, Hum. Exp. Toxicol., 2003, vol. 22, pp. 205–211.

    CAS  PubMed  Google Scholar 

  3. Ames, B.N., Shigenaga, M.K., and Hagen, T.M., Oxidants, antioxidants, and the degenerative diseases of aging, Proc. Natl. Acad. Sci. U. S. A., 1993, vol. 90, pp. 7915–7922.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. APHA, Standard Methods for the Examination of Water and Waste Water, Washington: American Public Health Association, 2012.

  5. ASTM, Standard Guide for Conducting Acute Toxicity Tests with Fishes, Macro Invertebrates, and Amphibians, Philadelphia: American Society for Test and Materials, 2007.

  6. Ateeq, B., Farah, M.A., Ali, M.N., and Ahmad, W., Induction of micronuclei and erythrocyte alterations in the catfish Clarias batrachus by 2,4-dichlorophenoxyacetic acid and butachlor, Mutat. Res., 2002, vol. 518, pp. 135–144.

    CAS  PubMed  Google Scholar 

  7. Chang, J., Liu, S., Zhou, S., Wang, M., and Zhu, G., Effects of butachlor on reproduction and hormone levels in adult zebrafish (Danio rerio), Exp. Toxicol. Pathol., 2013, vol. 65, pp. 205–209.

    CAS  PubMed  Google Scholar 

  8. Chao, L., Zhou, Q.X., Chen, S., Cui, S., and Wang, M.E., Single and joint stress of acetochlor and Pb on three agricultural crops in northeast China, J. Environ. Sci. (China), 2007, vol. 19, pp. 719–724.

    CAS  Google Scholar 

  9. Clairborne, A., Catalase activity, in Handbook of Methods for Oxygen Radical Research, Greenwald, A.R., Ed., Florida: CRC, 1995, pp. 237–242.

    Google Scholar 

  10. Dar, S.A., Yousuf, A.R., Balkhi, M.U.H., Ganai, F.A., and Bhat, F.A., Assessment of endosulfan induced genotoxicity and mutagenicity manifested by oxidative stress pathways in freshwater cyprinid fish Crucian carp (Carassius carassius L.), Chemosphere, 2015, vol. 120, pp. 273–283.

    CAS  PubMed  Google Scholar 

  11. De, A., Bose, R., Kumar, A., and Mozumdar, S., Targeted Delivery of Pesticides Using Biodegradable Polymeric Nanoparticles, New Delhi: Springer, 2014.

    Google Scholar 

  12. Devan, H., Amala, A., Rangasamy, B., Nataraj, B., and Ramesh, M., Sublethal toxicity of quinalphos on oxidative stress and antioxidant responses in a freshwater fish Cyprinus carpio, Environ. Toxicol., 2016, vol. 31, pp. 1399–1406.

    Google Scholar 

  13. Fajardo, F.F., Takagi, K., Ishizaka, M., and Usui, K., Pattern and rate of dissipation of pretilachlor and mefenacet in plow layer and paddy water under low land field condition: a three-year study, J. Pesticide Sci., 2000, vol. 25, no. 2, pp. 94–100.

    CAS  Google Scholar 

  14. Farombi, E.O., Ajimoko, Y.R., and Adelowo, O.A., Effect of butachlor on antioxidant enzyme status and lipid peroxidation in freshwater African catfish (Clarias gariepinus), Int. J. Environ. Res. Public Health, 2008, vol. 5, pp. 423–427.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gaaied, S., Oliveira, M., Le Bihanic, F., Cachot, J., and Banni, M., Gene expression patterns and related enzymatic activities of detoxification and oxidative stress systems in zebrafish larvae exposed to the 2,4-dichlorophenoxyacetic acid herbicide, Chemosphere, 2019, vol. 224, pp. 289–297.

    CAS  PubMed  Google Scholar 

  16. Gilliom, R., Pesticides in US streams and ground water, Environ. Sci. Technol., 2007, vol. 41, pp. 8–14.

    Google Scholar 

  17. Gupta, P. and Verma, S.K., Evaluation of genotoxicity induced by herbicide pendimethalin in fresh water fish Clarias batrachus (Linn.) and possible role of oxidative stress in induced DNA damage, Drug Chem. Toxicol., 2020.

  18. Halliwell, B. and Gutteridge, J.M.C., Free Radicals in Biology and Medicine, Oxford: Oxford Univ. Press, 1999, 3rd ed.

    Google Scholar 

  19. Hladik, M.L., Bouwer, E.J., and Roberts, A.L., Neutral chloroacetamide herbicide degradates and related compounds in Midwestern United States drinking water sources, Sci. Total Environ., 2008, vol. 390, pp. 155–165.

    CAS  PubMed  Google Scholar 

  20. Husak, V.V., Mosiichuk, N.M., Maksymiv, I.V., Storey, J.M., Storey, K.B., and Lushchak, V.I., Oxidative stress responses in gills of goldfish, Carassius auratus, exposed to the metribuzin-containing herbicide Sencor, Environ. Toxicol. Pharmacol., 2016, vol. 45, pp. 163–169.

    CAS  PubMed  Google Scholar 

  21. Jonsson, C.M., Arana, S., and Ferracini, V.L., Herbicide Mixtures from Usual Practice in Sugarcane Crop: evaluation of oxidative stress and histopathological effects in the tropical fish Oreochromis niloticus, Water Air Soil Pollut., 2017, vol. 228, p. 332.

    Google Scholar 

  22. Kaya, A. and Yigit, E., Interactions among glutathione S‑transferase, glutathione reductase activity and glutathione contents in leaves of Vicia faba L. subjected to flurochloridone, Fresenius Environ. Bull., 2012, vol. 21, pp. 1635–1640.

    CAS  Google Scholar 

  23. Massey, V. and Willims, C.H., On the reaction mechanism of yeast glutathione reductase, J. Biol. Chem., 1965, vol. 240, pp. 4470–4481.

    CAS  PubMed  Google Scholar 

  24. Misra, H.P. and Fridovich, I., The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase, J. Biol. Chem., 1972, vol. 247, pp. 3170–3175.

    CAS  PubMed  Google Scholar 

  25. Mohammad, F.V. and Hedayati, A., Acute toxicity of butachlor to Rutilus rutilus caspicus and Sander lucioperca in vivo condition, Transylvan. Rev. Syst. Ecol. Res., 2017, vol. 19, no. 3, pp. 85–92.

    Google Scholar 

  26. Muthulakshmi, S., Maharajan, K., Habibi, H.R., Kadirvelu, K., and Venkataramana, M., Zearalenone induced embryo and neurotoxicity in zebrafish model (Danio rerio) role of oxidative stress revealed by a multi biomarker study, Chemosphere, 2018, vol. 198, pp. 111–121.

    CAS  PubMed  Google Scholar 

  27. Mutlu-Turkoglu, U., Oztezcan, S., Telci, A., Orhan, Y., Aykac-Toker, G., Sivas, A., and Uysal, M., An increase in lipoprotein oxidation and endogenous lipid peroxides in serum of obese women, Clin. Exp. Med., 2003, vol. 2, pp. 171–174.

    CAS  PubMed  Google Scholar 

  28. Neamat-Allah, A.N.F., Mahsoub, Y.H., and Mahmoud, E.A., The potential benefits of dietary β-glucan against growth retardation, immunosuppression, oxidative stress and expression of related genes and susceptibility to Aeromonas hydrophila challenge in Oreochromis niloticus induced by herbicide pendimethalin, Aquat. Res., 2020, vol. 00, pp. 1–11.

    Google Scholar 

  29. Nwani, C.D., Lakra, Nagpure, N.S., Kumar, R., Kushwaha, B., and Srivastava, S.K., Toxicity of the herbicide atrazine: effects on lipid peroxidation and activities of antioxidant enzymes in the freshwater fish Channa punctatus (Bloch), Int. J. Environ. Res. Public Health, 2010, vol. 7, pp. 3298–3312.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Organization for Economic Cooperation and Development (OECD) Guideline for the Testing of Chemicals, Fish Acute Toxicity Test, Document 203, OECD, Paris, France, 1992.

    Google Scholar 

  31. Pala, A., The effect of a glyphosate-based herbicide on acetylcholinesterase (AChE) activity, oxidative stress, and antioxidant status in freshwater amphipod: Gammarus pulex (Crustacean), Environ. Sci. Pollut. Res., 2019, vol. 26, pp. 36869–36877.

    CAS  Google Scholar 

  32. Peebua, P., Kruatrachue, M., Pokethitiyook, P., and Singhakaew, S., Histopathological alterations of Nile tilapia, Oreochromis niloticus in acute and subchronic alachlor exposure, J. Environ. Biol., 2008, vol. 29, pp. 325–331.

    CAS  PubMed  Google Scholar 

  33. Persch, T.S.P., Weimer, R.N., Freitas, B.S., and Oliveira, G.T., Metabolic parameters and oxidative balance in juvenile Rhamdia quelen exposed to rice paddy herbicides: Roundup®, Primoleo®, and Facet®, Chemosphere, 2017, vol. 174, pp. 98–109.

    CAS  PubMed  Google Scholar 

  34. Poletta, G.L., Simoniello, M.F., and Mudry, M.D., Biomarkers of oxidative damage and antioxidant defense capacity in Caiman latirostris blood, Comp. Biochem. Physiol., 2016, vol. 179, pp. 29–36.

    CAS  Google Scholar 

  35. Raimondo, S., Vivian, D.N., and Barron, M.G., Standardizing acute toxicity data for use in ecotoxicology models: influence of test type, life stage, and concentration reporting, Ecotoxicology, 2009, vol. 18, pp. 918–928.

    CAS  PubMed  Google Scholar 

  36. Ruiz de Arcaute, C., Ossana, N.A., and Pérez-Iglesias, J.M., Auxinic herbicides induce oxidative stress on Cnesterodon decemmaculatus (Pisces: Poeciliidae), Environ. Sci. Pollut. Res., 2019, vol. 26, pp. 20485–20498.

    Google Scholar 

  37. Sadeghi, A. and Imanpoor, M.R., Effect of pretilachlor on the mortality of fish Gambusia, World J. Zool., 2013, vol. 8, no. 3, pp. 336–339.

    Google Scholar 

  38. Samanta, P., Pal, A., Mukherjee, K., and Ghosh, A.R., Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes, Ecotoxicol. Environ. Saf., 2014, vol. 107, pp. 120–125.

    CAS  PubMed  Google Scholar 

  39. Sharma, S.K. and Krishnamurthy, C.R., Production of lipid peroxidation of brain, J. Neurochem., 1968, vol. 15, pp. 147–149.

    CAS  PubMed  Google Scholar 

  40. Song, S.B., Xu, Y., and Zhou, B.S., Effects of hexachlorobenzene on antioxidant status of liver and brain of common carp (Cyprinus carpio), Chemosphere, 2006, vol. 65, pp. 699–706.

    CAS  PubMed  Google Scholar 

  41. Soni, R, and Verma SK, Acute toxicity and behavioural responses in Clarias batrachus (Linnaeus) exposed to herbicide pretilachlor, Heliyon, 2018, vol. 4, no. 12, p. e01090.

  42. Soni, R, and Verma, SK, Impact of herbicide pretilachlor on reproductive physiology of walking catfish, Clarias batrachus (Linnaeus), Fish Physiol. Biochem., 2020, vol. 46, no. 6, pp. 2065–2072.

    CAS  PubMed  Google Scholar 

  43. Stara, A., Machova, J., and Velisek, J., Effect of chronic exposure to simazine on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.), Environ. Toxicol. Pharmacol., 2012, vol. 33, pp. 334–343.

    CAS  PubMed  Google Scholar 

  44. Tu, W., Niu, L., Liu, W., and Xu, C., Embryonic exposure to butachlor in zebrafish (Danio rerio): endocrine disruption, developmental toxicity and immunotoxicity, Ecotoxicol. Environ. Saf., 2013, vol. 89, pp. 189–195.

    CAS  PubMed  Google Scholar 

  45. United State Environmental Protection Agency (USEPA), Ecological Affects Test Guidelines, OPPTS 850.1075 Fish Acute Toxicity Test, Freshwater and Marine, Washington: Environmental Protection Agency, EPA 712-C-96-118, 1996.

  46. Van der Oost, R., Beyer, J., and Vermeulen, N.P.E., Fish bioaccumulation and biomarkers in environmental risk assessment: a review, Environ. Toxicol. Pharmacol., 2003, vol. 13, pp. 57–149.

    CAS  PubMed  Google Scholar 

  47. Wang, X.H., Souders, C.L., Zhao, Y.H., and Martyniuk, C.J., Mitochondrial bioenergetics and locomotor activity are altered in zebra fish (Danio rerio) after exposure to the bipyridylium herbicide diquat, Toxicol. Lett., 2018, vol. 283, pp. 13–20.

    CAS  PubMed  Google Scholar 

  48. Worthing, C.R. and Hance, R.J., Pretilachlor in the Pesticide Manual, Surrey, UK: The British Crop Protection Council, 1991.

    Google Scholar 

  49. Xue, N., Xu, X., and Jin, Z., Screening 31 endocrine-disrupting pesticides in water and surface sediment samples from Beijing Guanting reservoir, Chemosphere, 2005, vol. 61, pp. 1594–1606.

    CAS  PubMed  Google Scholar 

  50. Young, I.S. and Woodside, J.V., Antioxidants in health and disease, J. Clin. Pathol., 2001, vol. 54, pp. 176–186.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhu, L., Li, W., Zha, J., Wang, M., Yuan, L., and Wang, Z., Butachlor causes disruption of hpg and hpt axes in adult female rare minnow (Gobiocypris rarus), Chem.-Biol. Interact., 2014, vol. 221, pp. 119–126.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to Head of the Department of Zoology, Guru Ghasidas University for providing laboratory facilities.

Funding

This research received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Verma.

Ethics declarations

Conflict of interest. The authors report no conflicts of interest.

Statement on the welfare of animals. All experiments related to the present study were carried out in the Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India following all ethical principles for animal welfare and safety regulations. The experiments conducted comply all the existing laws in India.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S.K., Soni, R. & Gupta, P. Herbicide Pretilachlor Induces Oxidative Stress in Freshwater Fish Clarias batrachus. Biol Bull Russ Acad Sci 50, 449–456 (2023). https://doi.org/10.1134/S1062359022601276

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359022601276

Keywords:

Navigation