Skip to main content
Log in

The Overwinter Survival of three Earthworm Species in Mono- and Multispecific Assemblages

  • ECOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Overwintering in temperate zone is an ecologically complex and energetically expensive period for lumbricids. At the adult stage lumbricid species are mostly freeze avoiding animals and spend the unfavourable temperature conditions in the deeper soil horizons. Overwintering earthworms rely on resources accumulated during the previous vegetative season; this suggests substantial metabolic losses or even death of specimens with insufficient internal reserves. Considering that food resources can be restricted in dense lumbricid associations, it was hypothesised that high density could be detrimental for overwintering earthworms. In the microcosm experiments in a beech/oak forest, overwintering success at various densities was investigated for three lumbricid species representing epigeic (Lumbricus rubellus), anecic (L. terrestris) and endogeic (Aporrectodea caliginosa) functional groups, and in a mixed association containing all three species. It was shown that density should be considered as a factor affecting the overwintering success of adult earthworms of any functional group. In any species, the increase of density of conspecifics or neighbourhood with specimens from other functional groups tended to worsen the state of overwintering earthworms and/or reduced their reproduction rates in spring. The negative consequences of overwintering were the worst for adults of L. rubellus and the weakest for A. caliginosa. Thus, overwintering can change the structure of multispecific earthworm associations, and consequently the interactions between separate species and their relative activities in the soil system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Aira, M., McNamara, N.P., Piearce, T.G., and Dominguez, J., Microbial communities of Lumbricus terrestris L. middens: structure, activity, and changes through time in relation to earthworm presence, J. Soils Sediments, 2009, vol. 9, pp. 54–61.

    Article  CAS  Google Scholar 

  2. Bazilevich, N.I., Biologicheskaya produktivnost' ekosistem Severnoi Evrazii (Biological Productivity of Ecosystems of Northern Eurasia), Moscow: Nauka, 1993.

  3. Boag, B., Legg, R.K., Neilson, R., Palmer, L.F., and Hackett, C.A., The use of Taylor’s Power Law to describe the aggregated distribution of earthworms in permanent pasture and arable soil in Scotland, Pedobiologia, 1994, vol. 38, pp. 303–306.

    Google Scholar 

  4. Bouché, M.B., Strategies lombriciennes, Ecol. Bull. (Stockholm), 1977, vol. 25, pp. 122–132.

    Google Scholar 

  5. Briones, M.J.I., Soil fauna and soil functions: a jigsaw puzzle, Front. Environ. Sci., 2014, vol. 2, pp. 1–22.

    Article  Google Scholar 

  6. Byzova, Yu.B., Comparative rate of respiration in some earthworms (Lumbricidae, Oligochaeta), Rev. Ecol. Biol. Sol., 1965, vol. 3, pp. 273–276.

    Google Scholar 

  7. Cai, H., Zarda, B., Mattison, J.R., Schönholzer, F., and Hahn, D., Fate of Protozoa transiting the digestive tract of the earthworm Lumbricus terrestris L., Pedobiologia, 2002, vol. 46, pp. 46–60.

    Article  Google Scholar 

  8. Cooke, A., The effects of fungi on food selection by Lumbricus terrestris L., in Earthworm Ecology, Satchell, J.E., Ed., Chapman and Hall, 1983, pp. 365–373.

    Google Scholar 

  9. Deckmyn, G., Flores, O., Mayer, M., Domene, X., Schnepf, A., Kuka, K., Van Looy, K., Rasse, D.P., Briones, M.J.I., Barot, S., Berg, M., Vanguelova, E., Ostonen, I., Vereecken, H., Suz, L.M., Frey, B., Frossard, A., Tiunov, A., Frouz, J., Grebenc, T., Öpik, M., Javaux, M., Uvarov, A., Vinduskova, O., Henning Krogh, P., Franklin, O., Jiménez, J., and Curiel Yuste, J., KEYLINK: towards a more integrative soil representation for inclusion in ecosystem scale models, I. Review and model concept, PeerJ., 2020, vol. 8: e9750. https://doi.org/10.7717/peerj.9750

    Article  PubMed  PubMed Central  Google Scholar 

  10. Edwards, C.A. and Bohlen, P.J., Biology and Ecology of Earthworms, London: Chapman and Hall, 1996.

    Google Scholar 

  11. Ehnes, R.B., Rall, B.C., and Brose, U., Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates, Supplement S1(a), Ecol. Lett., 2011, vol. 14, pp. 993–1000.

    Article  Google Scholar 

  12. Filser, J., Faber, J.H., Tiunov, A.V., Brussaard, L., Frouz, J., De Deyn, G., Uvarov, A.V., Berg, M.P., Lavelle, P., Loreau, M., Wall, D.H., Querner, P., Eijsackers, H., and Jiménez, J.J., Soil fauna: key to new carbon models, Soil, 2016, vol. 2, pp. 565–582.

    Article  CAS  Google Scholar 

  13. Gerard, B.M., Factors affecting earthworms in pastures, J. Anim. Ecol., 1967, vol. 36, pp. 235–252.

    Article  Google Scholar 

  14. Golovanova, E.V., Knyazev, S.Yu., and Karaban, K., Are there advantages in an aboriginal earthworm species compared to invasive species in Western Siberia?, in Problems of Soil Zoology, Uvarov, A.V., Ed., Moscow: KMK, 2018, pp. 60–61.

    Google Scholar 

  15. Holmstrup, M., Overwintering adaptations in earthworms, Pedobiologia, 2003, vol. 47, pp. 504–510.

    Google Scholar 

  16. Holmstrup, M. and Overgaard, J., Freeze tolerance in Aporrectodea caliginosa and other earthworms from Finland, Cryobiology, 2007, vol. 55, pp. 80–86.

    Article  CAS  Google Scholar 

  17. Hutchinson, K.J., and King, K.L., Consumers, in Grassland Ecosystems of the World. Analyses of Grasslands and Their Uses, Coupland, R., Ed., Cambridge: Cambridge Univ. Press, 1979, pp. 259–265.

    Google Scholar 

  18. Jones, C.G., Lawton, J.H., and Shachak, M., Organisms as ecosystem engineers, Oikos, 1994, vol. 69, pp. 373–386.

    Article  Google Scholar 

  19. Karaban, K. and Uvarov, A.V., Non-trophic effects of earthworms on enchytraeids: an experimental investigation, Soil Biol. Biochem., 2014, vol. 73, pp. 84–92.

    Article  CAS  Google Scholar 

  20. Lee, K.E., Earthworms, Their Ecology and Relationships with Soils and Land Use, Sydney: Academic, 1985.

    Google Scholar 

  21. Medina-Sauza, R.M., Álvarez-Jiménez, M., Delhal, A., Reverchon, F., Blouin, M., Guerrero-Analco, J., Cerdán, C.R., Guevara, R., Villain, L., and Barois, I., Earthworms building up soil microbiota, a review, Fron. Environ. Sci., 2019, https://doi.org/10.3389/fenvs.2019.00081

  22. Meshcheryakova, E.N., The resistance of earthworms (Oligochaeta, Lumbricidae, Moniligastridae) to negative temperatures, Ph.D. Thesis, St. Petersburg: St. Petersburg University, 2011, pp. 1–163.

  23. Meshcheryakova, E.N. and Berman, D.I., The cold hardiness and geographic distribution of earthworms (Oligochaeta, Lumbricidae, Moniligastridae), Russ. J. Zool., 2014, vol. 93, pp. 53–64.

    Google Scholar 

  24. Nordström, S., Seasonal activity of lumbricids in southern Sweden, Oikos, 1975, vol. 26, pp. 307–315.

    Article  Google Scholar 

  25. Nuutinen, V. and Butt, K.R., Worms from the cold: Lumbricid life stages in boreal clay during frost, Soil Biol. Biochem., 2009, vol. 41, pp. 1580–1582.

    Article  CAS  Google Scholar 

  26. Petersen, H. and Luxton, M., A comparative analysis of soil fauna populations and their role in decomposition processes, Oikos, 1982, vol. 39, pp. 287–388.

    Google Scholar 

  27. Phillipson, J., Abel, R., Steel, J., and Woodell, S.R.J., Earthworms and the factors governing their distribution in an English beechwood, Pedobiologia, 1976, vol. 16, pp. 258–285.

    Google Scholar 

  28. Piearse, T.G., Gut contents of some lumbricid earthworms, Pedobiologia, 1978, vol. 18, pp. 153–157.

    Google Scholar 

  29. Potapov, A.M., Tiunov, A.V., Scheu, S., Larsen, T., and Pollierer, M.M., Combining bulk and amino acid stable isotope analyses to quantify trophic level and basal resources of detritivores: a case study on earthworms, Oecologia, 2019. https://doi.org/10.1007/s00442-018-04335-3

  30. Rundgren, S., Vertical distribution of lumbricids in southern Sweden, Oikos, 1975, vol. 26, pp. 299–306.

    Article  Google Scholar 

  31. Schönholzer, F., Hahn, D., and Zeyer, J., Origins and fate of fungi and bacteria in the gut of Lumbricus terrestris L. studied by image analysis, FEMS Microbiol. Ecol., 1999, vol. 28, pp. 235–248.

    Article  Google Scholar 

  32. Tiunov, A.V. and Scheu, S., Microbial respiration, biomass, biovolume and nutrient status in Lumbricus terrestris L. burrow walls, Soil Biol. Biochem., 1999, vol. 31, pp. 2039–2048.

    Article  CAS  Google Scholar 

  33. Tiunov, A.V., Bonkowski, M., Alphei, J., and Scheu, S., Microflora, Protozoa and Nematoda in Lumbricus terrestris burrow walls: a laboratory experiment. Pedobiologia, 2001, vol. 45, pp. 46–60.

    Article  Google Scholar 

  34. Uvarov, A.V., Inter- and intraspecific interactions in lumbricid earthworms: their role for earthworm performance and ecosystem functioning, Pedobiologia, 2009, vol. 53, pp. 1–27.

    Article  Google Scholar 

  35. Uvarov, A.V., Density-dependent responses in some common lumbricid species, Pedobiologia, 2017, vol. 61, pp. 1–8.

    Article  Google Scholar 

  36. Uvarov, A.V., and Scheu, S., Effects of developmental stage and temperature regime on respiration rate of Lumbricus rubellus (Lumbricidae), Pedobiologia, 2004, vol. 48, pp. 365–371.

    Article  Google Scholar 

  37. Uvarov, A.V., Tiunov A.V., and Scheu, S., Effects of seasonal and diurnal temperature fluctuations on population dynamics of two epigeic earthworm species in forest soil, Soil Biol. Biochem., 2011, vol. 43, pp. 559–570.

    Article  CAS  Google Scholar 

  38. Uvarov, A.V., Ilieva-Makulec, K., Karaban, K., Yakovenko, N.S., and Uchmański, J., Effects of intra- and interspecific interactions in earthworm assemblages: a comparative study, Biol. Bull., 2019, vol. 46, pp. 475–482.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I thank Nina Potapova, Janusz Uchmański, Józef Wróbel and the staff of the Mikolajki Hydrobiological Station PAS for the assistance. The work was supported in 2006–2008 by the Ministry of Science and Higher Education of the Republic of Poland (project no. 2P04F03030) and by the Russian Foundation for Basic Research (project no. 06-04-49685).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Uvarov.

Ethics declarations

Conflict of interest. The author declares that he has no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uvarov, A.V. The Overwinter Survival of three Earthworm Species in Mono- and Multispecific Assemblages. Biol Bull Russ Acad Sci 48, 821–828 (2021). https://doi.org/10.1134/S1062359021130069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359021130069

Keywords:

Navigation