Skip to main content
Log in

Effects of Environmental Conditions on Spring Arrival, the Timing of Nesting, and the Reproductive Effort of Ross’s Gull (Phodostethia rosea) in the Delta of Lena River, Yakutia

  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Data on the spring phenology and reproductive parameters of Ross’s Gull were collected during the period 1980–2013 on the delta of Lena River, northern Yakutia (71°42–74° N, 120°–129°30 E). During this period, significant changes in weather occurred. The mean annual temperature (F1.27 = 7.74, p < 0.04), the mean June temperature (F1.27 = 11.75, p < 0.002), and the summer temperature (F1.27 = 9.13, p < 0.005) increased, and the mean daily air temperatures crossing 0°C shifted to earlier dates (F1.26 = 14.73, p < 0.001). However, the duration of the period with positive temperatures increased only slightly (F1.26 = 3.53, p < 0.07). The arrival of Ross’s gulls to the Lena Delta depended on the dates of snow melting (r = 0.62, p < 0.05), the mean June temperatures (r = –0.48, p < 0.01), and the minimal June daily temperatures (r = –0.70, p < 0.001). The maximum amplitude of fluctuations in egg numbers among all arctic gulls was revealed for complete clutches of Ross’s Gull. In the Lena Delta, this amplitude was higher than in more southerly regions, where the nesting ecology of the species was mainly studied. The clutch size was negatively correlated with the dates of clutch initiation, the females that began to nest earlier showing larger clutch sizes. The reproductive effort of the species depended negatively on the temperature of the prenesting period. In cold years, the dates of nesting initiation shifted to later times (r = –0.75, p < 0.001) and the clutch size declined (F1,172 = 27.31, p < 0.00001). There was a tendency towards a decrease in the egg volume, which is the most noticeable from the dates of snow melting (F1,226 = 33.4, p < 0.00001) and a decrease in the average temperature of the prenesting period (F1,226 = 23.4, p < 0.00001). Despite an increase in the nesting season temperatures in the Lena Delta since 1982 and the earlier arrival of Ross’s Gull (F1.27 = 14.87, p < 0.001), no shift in the dates of nesting initiation was detected. In our opinion, this is because the amplitude of interannual changes has a wider range than the long-term trend. The patterns of variations in the dates of nesting initiation and in the clutch sizes and egg volume are due to the dynamics of environmental conditions, primarily air temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Abraham, C.L. and Sydeman, W.J., Ocean climate, euphausiids and auklet nesting: inter-annual trends and variation in phenology, diet and growth of a planktivorous seabird, Ptychoramphus aleuticus, Mar. Ecol. Progr. Ser., 2004, vol. 274, pp. 235–250.

    Article  Google Scholar 

  2. Andreev, A.V., Breeding success of the Ross’s gull Rhodostethia rosea (McGill.) in the Nizhnekolymskaya tundra and the factors that determine it, in Redkie i ischezayushchie ptitsy Dal’nego Vostoka (Rare and Endangered Birds of the Far East), Vladivostok, 1985, pp. 110–131.

  3. Andreev, A.V. and Kondrat’ev, A.Ya., New data on the biology of the Ross’s gull (Rhodostethia rosea), Zool. Zh., 1981, vol. 60, no. 3, pp. 418–425.

    Google Scholar 

  4. Artemyev, A.V., The influence of climate change on the ecology of the pied flycatcher (Ficedula hypoleuca) in Southern Karelia, Russ. J. Ecol., 2013, vol. 44, no. 3, pp. 239–246.

    Article  Google Scholar 

  5. Barbraud, C. and Weimerskirch, H., Antarctic birds breed later in response to climate change, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, pp. 6248–6251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Berteaux, D., Humphries, M.M., Krebs, C.J., Lima, M., McAdam, A.G., Pettorelli, N., et al., Constraints to projecting the effects of climate change on mammals, Climate Res., 2006, vol. 32, pp. 151–158.

    Article  Google Scholar 

  7. Both, Ch., Food availability, mistiming, and climatic change, in Effects of Climate Change on Birds, Oxford, 2010, pp. 129–147.

  8. Burger, J., Gochfeld, M., and Garcia, E.F.J., Ross’s Gull (Rhodostethia rosea), in Handbook of the Birds of the World Alive, del Hoyo, J., Elliott, A., Sargatal, J., Christie, D.A., and de Juana, E., Eds., Barcelona: Lynx Edicions, 2018. www.hbw.com/node/54007. Accessed February 10, 2018.

  9. Charmantier, A., McCleery, R.H., Cole, L.R., Perrins, C.M., Kruuk, L.E.B., and Sheldon, B.C., Adaptive phenotypic plasticity in response to climate change in a wild bird population, Science, 2008, vol. 320, pp. 800–803.

    Article  CAS  PubMed  Google Scholar 

  10. Cohen, J., Screen, J.A., Furtado, J.C., Barlow, M., Whittleston, D., Coumou, D., et al., Recent Arctic amplification and extreme mid-latitude weather, Nat. Geosci., 2014, vol. 7, pp. 627–637.

    Article  CAS  Google Scholar 

  11. Degtyarev, A.G., Labutin, Yu.V., and Blokhin, Yu.Yu., Ross’s gull: data on migrations and characteristics of the reproductive cycle at the boundaries of the range, Zool. Zh., 1987, vol. 66, pp. 1873–1886.

    Google Scholar 

  12. Dickey, M.H., Gauthier, G., and Cadieux, M.C., Climatic effects on the breeding phenology and reproductive success of an arctic-nesting goose species, Global Change Biol., 2008, vol. 14, pp. 1973–1985.

    Article  Google Scholar 

  13. Durant, J.M., Anker-Nilssen, T., Hjermann, D.O., and Stenseth, N.C., Regime shifts in the breeding of an Atlantic puffin population, Ecol. Lett., 2004, vol. 7, pp. 388–394.

    Article  Google Scholar 

  14. Frederiksen, M., Harris, M.P., Daunt, F., Rothery, P., and Wanless, S., Scale-dependent climate signals drive breeding phenology of three seabird species, Global Change Biol., 2004, vol. 10, pp. 1214–1221.

    Article  Google Scholar 

  15. Fufachev, I.A., Ehrich, D., Sokolova, N.A., Sokolov, V.A., and Sokolov, A.A., Flexibility in a changing arctic food web: can rough-legged buzzards cope with changing small rodent communities?, Global Change Biol., 2019, pp. 1–11. https://doi.org/10.1111/gcb.14790

  16. Gaston, A.J., Gilchrist, H.G., Mallory, M.L., and Smith, P.A., Changes in seasonal events, peak food availability, and consequent breeding adjustment in a marine bird: a case of progressive mismatching, Condor, 2009, vol. 111, pp. 111–119.

    Article  Google Scholar 

  17. Gaston, A.J., Gilchrist, H.G., and Hipfner, J.M., Climate change, ice conditions and reproduction in an arctic nesting marine bird: Brunnich’s guillemot (Uria lomvia L.), J. Anim. Ecol., 2005, vol. 74, pp. 832–841.

    Article  Google Scholar 

  18. Gilg, O., Andreev, A., Aebischer, A., Kondratyev, A., Sokolov, A., and Dixon, A., Satellite tracking of Ross’s gull Rhodostethia Ross’sa in the Arctic Ocean, J. Ornithol., 2016, vol. 157, pp. 249–253.

    Article  Google Scholar 

  19. van Gils, J.A., Lisovski, S., Lok, T., Meissner, W., Ozarowska, A., de Fouw, J., et al., Body shrinkage due to arctic warming reduces red knot fitness in tropical wintering range, Science, 2016, vol. 352, pp. 819–821. https://doi.org/10.1126/science.aad6351

    Article  CAS  PubMed  Google Scholar 

  20. Gjerdrum, C., Vallee, A.M.J., St Clair, C.C., Betram, D.F., Ryder, J.L., and Blackburn, G.S., Tufted puffin reproduction reveals ocean climate variability, Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, pp. 9377–9382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Golovnyuk, V.V., Solov’ev, M.Yu., and Popovkina, A.B., Long-term monitoring of birds of terrestrial ecosystems in Taimyr, in Dinamika chislennosti ptits v nazemnykh landshaftakh (Dynamics of Abundance of Birds in Terrestrial Landscapes), Moscow, 2017, pp. 87–91.

  22. Governali, F.C., Gates, H.R., Lanctot, R.B., and Holmes, R.T., Egg volume can be accurately and efficiently estimated from linear dimensions for Arctic-breeding shorebirds, Wader Study Group Bull., 2012, vol. 119, pp. 46–51.

    Google Scholar 

  23. Gunnarsson, T.G. and Tómasson, G., Flexibility in spring arrival of migratory birds at northern latitudes under rapid temperature changes, Bird Study, 2011, vol. 58, pp. 1–12.

    Article  Google Scholar 

  24. Jonsén, N., Lindén, A., Ergon, T., Knudsen, E., Vik, J.O., Rubolini, D., et al., Rapid advance of spring arrival dates in long-distance migratory birds, Science, 2006, vol. 312, pp. 1959–1961.

    Article  Google Scholar 

  25. Krechmar, A.V., Andreev, A.V., and Kondrat’ev, A.Ya., Ptitsy severnykh ravnin (Birds of the Northern Plains), Leningrad: Nauka, 1991.

  26. Kwon, E., English, W.B., Weiser, E.L., Franks, S.E., Hodkinson, D.J., Lank, D.B., and Sandercock, B.K., Delayed egg-laying and shortened incubation duration of arctic-breeding shorebirds coincide with climate cooling, Ecol. Evol., 2018, vol. 8, pp. 1339–1351.

    Article  PubMed  Google Scholar 

  27. Kwon, E., Weiser, E.L., Lanctot, R.B., Brown, S.C., Gates, H.R., Gilchrist, G., Kendall, S.J., et al., Geographic variation in the intensity of warming and phenological mismatch between arctic shorebirds and invertebrates, Ecol. Monogr., 2019, e01383. https://doi.org/10.1002/ecm.1383

  28. Lameris, T.K., Scholten, I., Bauer, S., Cobben, M.M.P., Ens, B.J., and Nolet, B.A., Potential for an Arctic-breeding migratory bird to adjust spring migration phenology to Arctic amplification, Global Change Biol., 2017, pp. 1–11. https://doi.org/10.1111/gcb.13684

  29. Lameris, T.K., van der Jeugd, H.P., Eichhorn, G., Dokter, A.M., Bouten, W., Boom, M.P., Litvin, K.E., Ens, B.J., and Nolet, B.A., Arctic geese tune migration to a warming climate but still suffer from a phenological mismatch, Curr. Biol., 2018, vol. 28, pp. 1–7.

    Article  Google Scholar 

  30. Layton-Matthews, K., Hansen, B.B., Grøtan, V., Fuglei, E., and Loonen, M.J.J.E., Contrasting consequences of climate change for migratory geese: predation, density dependence and carryover effects offset benefits of high-arctic warming, Global Change Biol., 2019. https://doi.org/10.1111/gcb.14773

  31. Liebezeit, J.R., Gurney, K.E.B., Budde, M., Zack, S., and Ward, D., Phenological advancement in Arctic bird species: relative importance of snow melt and ecological factors, Polar Biol., 2014, vol. 37, pp. 1309–1320.

    Article  Google Scholar 

  32. Martin, J.L., Smith, P.A., Bechet, A., and Daufresne, T., Late snowmelt can result in smaller eggs in arctic shorebirds, Polar Biol., 2018, vol. 41, pp. 2289–2295.

    Article  Google Scholar 

  33. Meltofte, H., Piersma, T., Boyd, H., MacCaffery, B., Ganter, B., Golovnyuk, V.V., et al., A circumpolar review of the effects of climate variation on the breeding ecology of Arctic shorebirds, Meddelelser om Greenland Biosci., 2007, vol. 59, pp. 1–48.

    Google Scholar 

  34. Moe, B., Stempniewicz, L., Jakubas, D., Angelier, F., Chastel, O., Dinessen, F., et al., Climate change and phenological responses of two seabird species breeding in the high-Arctic, Mar. Ecol. Progr. Ser., 2009, vol. 393, pp. 235–246.

    Article  Google Scholar 

  35. Møller, A.P., Flensted-Jensen, E., and Mardal, W., Rapidly advancing laying date in a seabird and the changing advantage of early reproduction, J. Anim. Ecol., 2006, vol. 75, pp. 657–665.

    Article  PubMed  Google Scholar 

  36. Murphy, E.C., Springer, A.M., and Roseneau, D.G., High annual variability in reproductive success of kittiwakes (Rissa tridactyla L.) at a colony in western Alaska, J. Anim. Ecol., 1991, vol. 60, pp. 515–534.

    Article  Google Scholar 

  37. Newton, I., Population Limitation in Birds, London: Academic, 1998.

    Google Scholar 

  38. NOAA Climate Prediction Center. http://www.cpc. ncep.noaa.gov. Accessed September 5, 2019.

  39. van Oudenhove, L., Gauthier, G., and Lebreton, J.D., Year-round effects of climate on demographic parameters of an Arctic-nesting goose species, J. Anim. Ecol., 2014, vol. 83, pp. 1322–1333.

    Article  PubMed  Google Scholar 

  40. Parmesan, C. and Yohe, G., A globally coherent fingerprint of climate change impacts across natural systems, Nature, 2003, vol. 421, pp. 37–42.

    Article  CAS  PubMed  Google Scholar 

  41. Perfil’eva, V.I., Vegetation, in Rastitel’nyi i zhivotnyi mir del’ty reki Leny (Flora and Fauna of the Lena River Delta), Yakutsk, 1985, pp. 49–78.

    Google Scholar 

  42. Pozdnyakov, V.I., Ross’s gull (Rhodostethia rosea) in the Lena River delta, in Buturlinskii sbornik: Materialy II Mezhdunarodnykh Buturlinskikh chtenii (Buturlin Collection of Papers: Proc. II Int. Buturlin Memorial Lectures), Ul’yanovsk, 2006, pp. 100–117.

  43. Reed, T.E., Warzybok, P., Wilson, A.J., Bradley, R.W., Wanless, S., and Sydeman, W.J., Timing is everything: flexible phenology and shifting selection in a colonial seabird, J. Anim. Ecol., 2009, vol. 78, pp. 376–387.

    Article  PubMed  Google Scholar 

  44. Sandercock, B.K., Lank, D.B., and Cooke, F., Seasonal declines in the fecundity of arctic-breeding sandpipers: different tactics in two species with an invariant clutch size, J. Avian Biol., 1999, vol. 30, pp. 460–468.

    Article  Google Scholar 

  45. Sharikov, A.V., Volkov, S.V., Sviridova, T.V., and Buslakov, V.V., Cumulative effect of trophic and weather–climatic factors on the population dynamics of the vole-eating birds of prey in their breeding habitats, Biol. Bull. (Moscow), 2019, vol. 46, no. 9, pp. 1097–1107.

    Article  Google Scholar 

  46. Smith, P.A. and Wilson, S., Intraseasonal patterns in shorebird nest survival are related to nest age and defence behaviour, Oecologia, 2010, vol. 163, pp. 613–624.

    Article  PubMed  Google Scholar 

  47. Sokolov L.V., Klimat v zhizni rastenii i zhivotnykh (Climate in the Life of Plants and Animals), St. Petersburg: Tessa, 2010.

  48. Solov’ev, M.Yu., Popovkina, A.B., and Golovnyuk, V.V., Some results of long-term monitoring of wader populations on the Taimyr, Buturlinskii sbornik: Materialy IV Mezhdunarodnykh Buturlinskikh chtenii (Buturlin Collection of Papers: Proc. IV Int. Buturlin Memorial Lectures), Ul’yanovsk, 2012, pp. 268–276.

  49. Stenseth, N.C., Mysterud, A., Ottersen, G., Hurrell, J.W., Chan, K.S., and Lima, M., Ecological effects of climate fluctuations, Science, 2002, vol. 297, pp. 1292–1296.

    Article  CAS  PubMed  Google Scholar 

  50. Volkov, S.V., Grinchenko, O.S., and Sviridova, T.V., Dates of arrival of the gray crane (Grus grus) in the northern suburbs and their relationship with weather and climatic factors, Zool. Zh., 2013, vol. 92, no. 7, pp. 834–840.

    Google Scholar 

  51. Wanless, S., Frederiksen, M., Walton, J., and Harris, M.P., Long-term changes in breeding phenology at two seabird colonies in the western North Sea, Ibis, 2009, vol. 151, pp. 274–285.

    Google Scholar 

  52. Weatherhead, P.J., Effects of climate variation on timing of nesting, reproductive success, and offspring sex ratios of red-winged blackbirds, Oecologia, 2005, vol. 144, pp. 168–175.

    Article  PubMed  Google Scholar 

  53. Weiser, E.L., Brown, S.C., Lanctot, R.B., Gates, H.R., Abraham, K., Bentzen, R.L., et al., Life-history tradeoffs revealed by seasonal declines in reproductive traits of 21 species of arctic-breeding shorebirds, J. Avian Biol., 2017, vol. 49. https://doi.org/10.1111/jav.01531

  54. Weiser, E.L., Brown, S.C., Lanctot, R.B., Gates, H.R., Abraham, K., Bentzen, R.L., et al., Effects of environmental conditions on reproductive effort and nest success of Arctic-breeding shorebirds, Ibis, 2018, vol. 160, pp. 608–623.

    Article  Google Scholar 

  55. Winkler, D.W., Dunn, P.O., and McCulloch, C.E., Predicting the effects of climate change on avian life-history traits, Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, pp. 13595–13599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yudin, K.A. and Firsova, L.V., Rhodostethia rosea—Ross’s gull, in Fauna Rossii i sopredel’nykh stran (Fauna of Russia and Neighboring Countries), vol. 2: Ptitsy (Birds), issue 2, part 1: Pomorniki semeistva Stercorariidae i chaiki podsemeistva Larinae (Skuas of the Family Stercorariidae and Gulls of the Subfamily Larinae), 2002, pp. 511–528.

  57. Zalakevicius, M., Bartkeviciene, G., Raudonikis, L., and Janulaitis, J., Spring arrival response to climate change in birds: a case study from Eastern Europe, J. Ornithol., 2006, vol. 147, pp. 326–343.

    Article  Google Scholar 

  58. Zubakin, V.A. and Avdanin, V.O., Features of the colonial nesting of the Ross’s gull (Rhodostethia rosea), Zool. Zh., 1983, vol. 62, no. 11, pp. 1754–1756.

    Google Scholar 

  59. Zubakin, V.A., Kishchinskii, A.A., Flint, V.E., and Avdanin, V.O., Ross’s gull, in Ptitsy SSSR. Chaikovye (Birds of the USSR. Gulls), Moscow: Nauka, 1988, pp. 244–257.

Download references

ACKNOWLEDGMENTS

We are sincerely grateful to D.V. Solovyeva, S.B. Rosenfeld, M.N. Ivanov, A.N. Syromyatnikova, and Yu.N. Sofronov, who helped in the collection of material in different years of field work, as well as to T.V. Sviridova, who made valuable comments on the text of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Volkov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by L. Solovyova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, S.V., Pozdnyakov, V.I. Effects of Environmental Conditions on Spring Arrival, the Timing of Nesting, and the Reproductive Effort of Ross’s Gull (Phodostethia rosea) in the Delta of Lena River, Yakutia. Biol Bull Russ Acad Sci 48, 1332–1341 (2021). https://doi.org/10.1134/S1062359021080318

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359021080318

Keywords:

Navigation