Skip to main content
Log in

Effect of Cell Passage Time on the Electrotransfection Efficiency

  • CELL BIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Gene electrotransfer is an effective and promising gene delivery technique in clinical applications, such as DNA vaccination and gene therapy. An improved gene therapy protocol depends on the the proper establishment of the gene transfer method. Electroporation has been widely employed in in vitro and in vivo protocols, and increaing its transfection efficiency has been the field of research. In order to achieve the the maximal introduction of plasmid DNA into cells with optimal cell viability, electro transfection conditions for every single cell type should be determined individually. In this work, the effect of cell passage time on the electrotransfection efficiency of CHO cells is determined. The selected cell passage times of 24 and 48 h prior to the electroporation are considered for the analysis. It is shown that electrotransfection efficiency with all plasmid concentrations significantly differs when comparing 24 and 48 h cell passage times. However, only slight change in the cell viability is observed at 24 and 48 h of cell passage times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Aihara, H. and Miyazaki, J., Gene transfer into muscle by electroporation in vivo, Nature Biotechnology, 1998, vol. 16, pp. 867–870. https://doi.org/10.1038/nbt0998-867

    Article  CAS  PubMed  Google Scholar 

  2. Bai, H., Lester, G.M.S., Petishnok, L.C., and Dean, D.A., Cytoplasmic transport and nuclear import of plasmid DNA. Bioscience Reports, 2017, vol. 37.

  3. Bonnafous, P., Vernhes, M., Teissié, J., and Gabriel, B., The generation of reactive-oxygen species associated with long-lasting pulse-induced electropermeabilisation of mammalian cells is based on a non-destructive alteration of the plasma membrane, Biochimca et Biophysica Acta (BBA)-Biomembranes, 1999, vol. 1461, no. 1, pp. 123–134. https://doi.org/10.1016/S0005-2736(99)00154-6

    Article  CAS  Google Scholar 

  4. Capecchi, M.R., High efficiency transformation by direct microinjection of DNA into cultured mammalian cells, Cell, 1980, vol. 22, no. 2, pp. 479–488. https://doi.org/10.1016/0092-8674(80)90358-X

    Article  CAS  PubMed  Google Scholar 

  5. Cervia, L.D., Chang, C.C., Wang, L., Mao, M., and Yuan, F., Enhancing electrotransfection efficiency through improvement in nuclear entry of plasmid DNA, Molecular Therapy. Nucleic Acids, 2018, vol. 11, pp. 263–271.

    Article  CAS  Google Scholar 

  6. Chopra, S. and Satkauskas, S., Electrotransfer of cytokine genes for cancer treatment, International Journal of Molecular Sciences, 2019, vol. 20, no. 16, pp. 1–12.

    Article  Google Scholar 

  7. Chopra, S., Ruzgys, P., Jakutaviciute, M., Rimgailaite, A., Navickaite, D., and Satkauskas, S., A novel method for controlled gene expression via combined bleomycin and plasmid DNA electrotransfer, CBU International Conference Proceedings, Prague, 2018, pp. 1036–1041. https://doi.org/10.12955/cbup.v6.1291

  8. de Gennes, P.G., Passive entry of a DNA molecule into a small pore, Proceedings of the National Academy of Sciences of the United States of America, 1999, vol. 96, no. 13, pp. 7262–7264.

    Article  Google Scholar 

  9. Escriou, V., Carriere, M., Bussone, F., Wils, P., and Scherman, D., Critical assessment of the nuclear import of plasmid during cationic lipid-mediated gene transfer, The Journal of Gene Medicine, 2001, vol. 3, no. 2, pp. 179–187. https://doi.org/10.1002/jgm.174

    Article  CAS  PubMed  Google Scholar 

  10. Ganeva, V., Galutzov, B., and Teissié, J., Electric field mediated loading of macromolecules in intact yeast cells is critically controlled at the wall level, Biochimca et Biophysica Acta (BBA)-Biomembranes, 1995, vol. 1240, no. 2, pp. 229–236. https://doi.org/10.1016/0005-2736(95)00181-6

    Article  Google Scholar 

  11. Gehl, J., Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research, Acta Physiologica Scandinavica, 2003, vol. 177, no. 4, pp. 437–447.

    Article  CAS  Google Scholar 

  12. Gift, E.A. and Weaver, J.C., Simultaneous quantitative determination of electroporative molecular uptake and subsequent cell survival using gel microdrops and flow cytometry, Cytometry, 2000, vol. 39, no. 4, pp. 243–249.

    Article  CAS  Google Scholar 

  13. Golzio, M., Teissie, J., and Rols, M.P., Direct visualization at the single-cell level of electrically mediated gene delivery, Proceedings of the National Academy of Sciences of the United States of America, 2002, vol. 99, no. 3, pp. 1292–1297. https://doi.org/10.1073/pnas.022646499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hendrick, V., Muniz, E., Geuskens, G., and Werenne, J., Adhesion, growth and detachment of cells on modified polystyrene surface, Cytotechnology, 2001, vol. 36 nos. 1–3, pp. 49–53. https://doi.org/10.1023/A:1014041003617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kanduser, M., Sentjurc, M., and Miklavcic, D., Cell membrane fluidity related to electroporation and resealing, European Biophysics Journal, 2006, vol. 35, no. 3, pp. 196–204. https://doi.org/10.1007/s00249-005-0021-y

    Article  PubMed  Google Scholar 

  16. Kohn, D.B., Sadelain, M., Dunbar, C., Bodine, D., Kiem, H., Candotti, F., and Glorioso, J., American society of gene therapy (ASGT) ad hoc subcommittee on retroviral-mediated gene transfer to hematopoietic stem cells, Molecular Therapy, 2003, vol. 8, no. 2, pp. 180–187. https://doi.org/10.1016/S1525-0016(03)00212-0

    Article  CAS  PubMed  Google Scholar 

  17. Kotnik, T., Bobanović, F., and Miklavcič, D., Sensitivity of transmembrane voltage induced by applied electric fields—a theoretical analysis, Bioelectrochemistry and Bioenergectics, 1997, vol. 2, no. 2, pp. 285–291. https://doi.org/10.1016/S0302-4598(97)00023-8

  18. Li, S. and Huang, L., Nonviral gene therapy: promises and challenges, Gene Therapy, 2000, vol. 7, no. 1, pp. 31–34. https://doi.org/10.1038/sj.gt.3301110

    Article  CAS  PubMed  Google Scholar 

  19. Marszalek, P., Liu, D.S., and Tsong, T.Y., Schwan equation and transmembrane potential induced by alternating electric field, Biophysical Journal, 1990, vol. 58, no. 4, pp. 1053–1058. https://doi.org/S0006-3495(90)82447-4

  20. Mir, L.M., Application of electroporation gene therapy: past, current, and future, Methods in Molecular Biology, 2008, vol. 423, pp. 3–17.

    Article  CAS  Google Scholar 

  21. Mostaghaci, B., Loretz, B., and Lehr, C.M., Calcium phosphate system for gene delivery: historical background and emerging opportunities, Current Pharmaceutical Design, 2016, vol. 22, no. 11, pp. 1529–1533.

    Article  CAS  Google Scholar 

  22. Mulligan, R.C., The basic science of gene therapy, Science, 1993, vol. 260, no. 5110, pp. 926–932. https://doi.org/10.1126/science.8493530

    Article  CAS  PubMed  Google Scholar 

  23. Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P.H., Gene transfer into mouse lyoma cells by electroporation in high electric fields, The EMBO Journal, 1982, vol. 1, no. 7, pp. 841–845.

    Article  CAS  Google Scholar 

  24. Neumann, E., Kakorin, S., and Tœnsing, K., Fundamentals of electroporative delivery of drugs and genes, Bioelectrochemistry and Bioenergectics, 1999, vol. 48, no. 1, pp. 3–16. https://doi.org/10.1016/S0302-4598(99)00008-2

  25. Phez, E., Faurie, C., Golzio, M., Teissié, J., and Rols, M., New insights in the visualization of membrane permeabilization and DNA/membrane interaction of cells submitted to electric pulses, Biochimca et Biophysica Acta (BBA)-General subjects, 2005, vol. 1724, no. 3, pp. 248–254. https://doi.org/10.1016/j.bbagen.2005.04.005

  26. Rae, J.L. and Levis, R.A., Single-cell electroporation, Pflugers Archiv: European Journal of Physiology, 2002, vol. 443, no. 4, pp. 664–670. https://doi.org/10.1007/s00424-001-0753-1

    Article  CAS  PubMed  Google Scholar 

  27. Rao, R.C. and Zacks, D.N., Cell and gene therapy, Developments in Ophthalmology, 2014, vol. 53, pp. 167–177.

    Article  Google Scholar 

  28. Rols, M.P., Delteil, C., Golzio, M., Dumond, P., Cros, S., and Teissie, J., In vivo electrically mediated protein and gene transfer in murine melanoma, Nature Biotechnology, 1998, vol. 16, no. 2, pp. 168–171. https://doi.org/10.1038/nbt0298-168

    Article  CAS  PubMed  Google Scholar 

  29. Rosazza, C., Meglic, S. H., Zumbusch, A., Rols, M.P., and Miklavcic, D., Gene electrotransfer: a mechanistic perspective. Current Gene Therapy, 2016, vol. 16, no, 2, pp. 98–129.

    Article  CAS  Google Scholar 

  30. Satkauskas, S., Bureau, M.F., Puc, M., Mahfoudi, A., Scherman, D., Miklavcic, D., and Mir, L.M., Mechanisms of in vivo DNA electrotransfer: respective contributions of cell electropermeabilization and DNA electrophoresis, Molecular therapy, 2002, vol. 5, no. 2, pp. 133–140. https://doi.org/10.1006/mthe.2002.0526

    Article  CAS  PubMed  Google Scholar 

  31. Schwachtgen, J.L., Ferreira, V., Meyer, D., and Kerbiriou-Nabias, D., Optimization of the transfection of human endothelial cells by electroporation, BioTechniques, 1994, vol. 17, no. 5, pp. 882–887.

    CAS  PubMed  Google Scholar 

  32. Sixou, S. and Teissie, J., Specific electropermeabilization of leucocytes in a blood sample and application to large volumes of cells, Biochimica Et Biophysica Acta, 1990, vol. 1028, no. 2, pp. 154–160. https://doi.org/0005-2736(90)90149-I

  33. Somiari, S., Glasspool-Malone, J., Drabick, J. J., Gilbert, R.A., Heller, R., Jaroszeski, M.J., and Malone, R.W., Theory and in vivo application of electroporative gene delivery, Molecular Therapy, 2002, vol. 2, no. 3, pp. 178–187. https://doi.org/10.1006/mthe.2000.0124

    Article  CAS  Google Scholar 

  34. Teissié, J., Escoffre, J.M., Rols, M.P., and Golzio, M., Time dependence of electric field effects on cell membranes, a review for a critical selection of pulse duration for therapeutical applications, Radiology and Oncology, 2008, vol. 42, pp. 196–206.

    Article  Google Scholar 

  35. Tsong, T.Y., Electroporation of cell membranes, Biophysics Journal, 1991, vol. 60, pp. 297–306. https://doi.org/10.1016/S0006-3495(91)82054-9

    Article  CAS  Google Scholar 

  36. Wirth, T., Parker, N., and Yla-Herttuala, S., History of gene therapy, Gene, 2013, vol. 525, no. 2, pp. 162–169. https://doi.org/10.1016/j.gene.2013.03.137

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Milda Jakutaviciute for assistance in language editing.

Funding

This research is funded by the European Social Fund according to the activity “Improvement of Researchers’’ Qualification by Implementing World-Class R&D Projects” of Measure no. 09.3.3-LMT-K-712-01-0188.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sonam Chopra, Paulius Ruzgys, Martynas Maciulevičius or Saulius Šatkauskas.

Ethics declarations

Conflict of interest. Authors declare that they have no conflicts of interest.

There is no funding received to accomplish this work.

Statements on the welfare of animals. Animals were not a part of this work at any stage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonam Chopra, Ruzgys, P., Maciulevičius, M. et al. Effect of Cell Passage Time on the Electrotransfection Efficiency. Biol Bull Russ Acad Sci 47, 441–447 (2020). https://doi.org/10.1134/S1062359020550014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359020550014

Keywords:

Navigation