Skip to main content
Log in

A Study of Mitochondrial DNA Copy Number and Heteroplasmy in Different Rat Brain Regions after Cranial Proton Impact

  • MOLECULAR RADIOBIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Studies, accumulated over recent years, indicate that mitochondria are, along with the nucleus, the most important target of radiation damage. The structural and functional disturbances induced by radiation in these organelles influence post-radiation development in a whole complex of effects at the cellular and whole organism level in animals and humans. This study is aimed at determining changes in the number of mitochondrial DNA (mtDNA) copies relative to nuclear DNA (nDNA) and identifying mutant copies of mtDNA in three brain regions (in the hippocampus, cortex, and cerebellum) of rats, at different times after cranial proton impact. Real-time PCR and a method of cleavage of mtDNA PCR amplicon heteroduplexes with Surveyor nuclease were used in this study. We revealed that after the proton exposure, the level of the mtDNA copy content in three brain regions of rats drastically increased with a simultaneous increase in the percentage of mutant mtDNA copies. The results obtained indicate that mtDNA synthesis and the level of its mutant copies differ in the hippocampus, cortex, and cerebellum of rats after cranial exposure to protons. One can suggest that increased mtDNA mutagenesis may result in mitochondrial dysfunction with oxidative stress induction, leading to nuclear genome instability and the development of delayed effects of ionizing radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Hladik, D. and Tapio, S., Effects of ionizing radiation on the mammalian brain, Mutat. Res., 2016, vol. 770, pp. 219–230.

    Article  CAS  Google Scholar 

  2. Casciati, A., Dobos, K., Antonelli, F., et al., Age-related effects of X-ray irradiation on mouse hippocampus, Oncotarget, 2016, vol. 7, no. 19, pp. 28040–28058.

    Article  Google Scholar 

  3. Limoli, C.L., Rola, R., Giedzinski, E., et al., Cell-density-dependent regulation of neural precursor cell function, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, pp. 16052–16057.

    Article  CAS  Google Scholar 

  4. Wang, Y., Xu, E., Musich, P.R., and Lin, F., Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure, CNS Neurosci. Ther., 2019. https://doi.org/10.1111/cns.13116

  5. Lee, W.T. and St. John, J.C., Mitochondrial DNA as an initiator of tumorigenesis, Cell Death Dis., 2016, vol. 7. e2171. https://doi.org/10.1038/cddis.2016.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Machado, T.S., Macabelli, C.H., Sangalli, J.R., et al., Real-time PCR quantification of heteroplasmy in a mouse model with mitochondrial DNA of C57BL/6 and NZB/BINJ strains, PLoS One, 2015, vol. 10, no. 8. e0133650

    Article  Google Scholar 

  7. Xie, Y.M., Jin, L., Chen, X.J., et al., Quantitative changes in mitochondrial DNA copy number in various tissues of pigs during growth, Genet. Mol. Res., 2015, vol. 14, no. 1, pp. 1662–1670.

    Article  CAS  Google Scholar 

  8. Van Houten, B., Hunter, S.E., and Meyer, J.N., Mitochondrial DNA damage induced autophagy, cell death, and disease, Front. Biosci. (Landmark Ed.), 2016, vol. 21, pp. 42–54.

  9. Azzam, E.I., Jay-Gerin, J.P., and Pain, D., Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury, Cancer Lett., 2012, vol. 327, pp. 48–60.

    Article  CAS  Google Scholar 

  10. Gaziev, A.I., Ways of maintaining the integrity of mitochondrial DNA and mitochondrial functions in cells exposed to ionizing radiation, Radiats. Biol. Radioekol., 2013, vol. 53, no. 2, pp. 117–136.

    CAS  Google Scholar 

  11. Kim, G.J., Fiskum, G.M., and Morgan, W.F., A role for mitochondrial dysfunction in perpetuating radiation induced genomic instability, Cancer Res., 2006, vol. 66, no. 21, pp. 10377–10383.

    Article  CAS  Google Scholar 

  12. Aguilera, A. and Garcia-Muse, T., Causes of genome instability, Ann. Rev. Genet., 2013, vol. 47, pp. 1–32.

    Article  CAS  Google Scholar 

  13. McKinnon, P.J., Genome integrity and disease prevention in the nervous system, Genes Dev., 2017, vol. 31, no. 12, pp. 1180–1194.

    Article  CAS  Google Scholar 

  14. Townsend, L.W., Implications of the space radiation environment for human exploration in deep space, Radiat. Prot. Dosim., 2005, vol. 115, pp. 44–50.

    Article  CAS  Google Scholar 

  15. Gonzalez-Hunt, C.P., Rooney, J.P., Ryde, I.T., Anbalagan, C., Joglekar, R., and Meyer, J.N., PCR-based analysis of mitochondrial DNA copy number, mitochondrial DNA damage, and nuclear DNA damage, Curr. Protoc. Toxicol., 2016, vol. 67, pp. 1–34.

    Google Scholar 

  16. Bannwarth, S., Procaccio, V., and Paquis-Flucklinger, V., Rapid identification of unknown heteroplasmic mitochondrial DNA mutations with mismatch-specific surveyor nuclease, Methods Mol. Biol., 2009, vol. 554, pp. 301–313.

    Article  CAS  Google Scholar 

  17. DeBalsi, K.L., Hoff, K.E., and Copeland, W.C., Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases, Ageing Res. Rev., 2017, vol. 33, pp. 89–104.

    Article  CAS  Google Scholar 

  18. Malakhova, L.V., Bezlepkin, V.G., Antipova, V.N., et al., The increase in copy number of mitochondrial DNA in tissues of γ-irradiated mice, Cell. Mol. Biol. Lett., 2005, vol. 10, pp. 592–603.

    Google Scholar 

  19. Nugent, S.M., Mothersill, C.E., Seymour, C., et al., Increased mitochondrial mass in cells with functionally compromised mitochondria after exposure to both direct gamma radiation and bystander factors, Radiat. Res., 2007, vol. 168, pp. 134–142.

    Article  CAS  Google Scholar 

  20. Zhang, H., Maguire, D., Swarts, S., et al., Replication of murine mitochondrial DNA following irradiation, Adv. Exp. Med. Biol., 2009, vol. 645, pp. 43–48.

    Article  CAS  Google Scholar 

  21. Gaziev, A.I., Abdullaev, S., and Podlutsky, A., Mitochondrial function and mitochondrial DNA maintenance with advancing age, Biogerontology, 2014, vol. 15, pp. 417–438.

    Article  CAS  Google Scholar 

  22. Pinto, M. and Moraes, C.T., Mechanisms linking mtDNA damage and aging, Free Radical Biol. Med., 2015, vol. 85, pp. 250–258.

    Article  CAS  Google Scholar 

  23. Matsuoka, S., Ballif, B.A., Smogorzewska, A., et al., ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage, Science, 2007, vol. 316, pp. 1160–1166.

    Article  CAS  Google Scholar 

  24. Bonner, W.M., Redon, C.E., Dickey, J.S., et al., γH2AX and cancer, Nat. Rev. Cancer, 2008, vol. 8, pp. 957–967.

    Article  CAS  Google Scholar 

  25. Hunt, R.J. and Bateman, J.M., Mitochondrial retrograde signaling in the nervous system, FEBS Lett., 2018, vol. 592, pp. 663–678.

    Article  CAS  Google Scholar 

  26. Hinchy, C., Gruszczyk, A.V., Willows, R., et al., Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly, J. Biol. Chem., 2018, vol. 293, no. 44, pp. 17208–17217.

    Article  CAS  Google Scholar 

  27. Bratic, A. and Larsson, N.G., The role of mitochondria in aging, J. Clin. Invest., 2013, vol. 123, pp. 951–957.

    Article  CAS  Google Scholar 

  28. Indo, H.P., Davidson, M., Yen, H.C., et al., Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage, Mitochondrion, 2007, vol. 7, nos. 1–2, pp. 106–118.

    Article  CAS  Google Scholar 

  29. Ishikawa, K., Takenaga, K., Akimoto, M., et al., ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis, Science, 2008, vol. 320, no. 5876, pp. 661–664.

    Article  CAS  Google Scholar 

  30. Mandavilli, B.S., Santos, J.H., and Van Houten, B., Mitochondrial DNA repair and aging, Mutat. Res., 2002, vol. 509, pp. 127–151.

    Article  CAS  Google Scholar 

Download references

Funding

This study is supported by the Russian Foundation for Basic Research, project no. 17-29-01007 ofi_m.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Abdullaev.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by A. Khaitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullaev, S.A., Evdokimovskii, E.V. & Gaziev, A.I. A Study of Mitochondrial DNA Copy Number and Heteroplasmy in Different Rat Brain Regions after Cranial Proton Impact. Biol Bull Russ Acad Sci 47, 1489–1494 (2020). https://doi.org/10.1134/S1062359020110023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359020110023

Keywords:

Navigation