Skip to main content
Log in

Modifying Effect of Low Salinity on Ni-Induced Alterations of the Lipid Composition in Mussels Mytilus edulis L.

  • ECOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The composition of lipids and fatty acids (FAs) in mussels Mytilus edulis exposed to various concentrations of nickel salt under reduced salinity of seawater (15‰) has been investigated. Alterations of the lipid composition in mussels in response to reduced salinity and the exposure to Ni have been observed. It is noted that changes in the content of phosphatidylserine and cholesterol and in phospholipid unsaturation in the gills and hepatopancreas of mussels under low salinity, most likely, indicate the development of pathological processes and activation of lipid peroxidation. Under normal salinity (25‰), similar changes in the lipid composition of the mussels studied have been observed at the initial stages of the experiment; however, by the end of the experiment, the phospholipid unsaturation is shown to be restored and the content of phosphatidylcholine increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Arduini, A., Peschechera, A., Dottori, S., Sciarroni, A.F., Serafini, F., and Calvani, M., High performance liquid chromatography of long-chain acylcarnitine and phospholipids in fatty acid turnover studies, J. Lipid Res., 1996, vol. 37, no. 3, pp. 684–689.

    Article  CAS  Google Scholar 

  2. Attig, H., Kamel, N., Sforzini, S., Dagnino, A., Jamel, J., Boussetta, H., Viarengo, A., and Banni, M., Effects of thermal stress and nickel exposure on biomarkers responses in Mytilus galloprovincialis (Lam), Mar. Environ. Res., 2014, vol. 94, pp. 65–71.

    Article  CAS  Google Scholar 

  3. Bakhmet, I.N., Berger, V.J., and Khalaman, V.V., The effect of salinity change on the heart rate of Mytilus edulis specimens from different ecological zones, J. Exp. Mar. Biol. Ecol., 2005, vol. 318, no. 2, pp. 121–126.

    Article  Google Scholar 

  4. Biochemistry of Lipids, Lipoproteins and Membranes, Vance, D.E. and Vance, J.E., Eds., 4th ed., Amsterdam: Elsevier, 2002.

    Google Scholar 

  5. Berger, V.J., On the minimal terms of triggering the processes of phenotypic adaptation, Dokl. Biol. Sci, 2005, vol. 400, no. 1, pp. 57–60.

    Article  Google Scholar 

  6. Blewett, T.A. and Leonard, E.M., Mechanisms of nickel toxicity to fish and invertebrates in marine and estuarine waters, Environ. Pollut., 2017, vol. 223, pp. 311–322.

    Article  CAS  Google Scholar 

  7. Denkhaus, E. and Salnikow, K., Nickel essentiality, toxicity, and carcinogenicity, Crit. Rev. Oncol. Hematol., 2002, vol. 42, no. 1, pp. 35–56.

    Article  CAS  Google Scholar 

  8. Engelbrecht, F.M., Mari, F., and Anderson, J.T., Cholesterol determination in serum: a rapid direction method, S. Afr. Med. J., 1974, vol. 48, no. 7, pp. 250–256.

    CAS  PubMed  Google Scholar 

  9. Fadok, V.A., Bratton, D.L., and Henson, P.M., Phagocyte receptors for apoptotic cells: recognition, uptake, and consequences, J. Clin. Invest., 2001, vol. 108, no. 7, pp. 957–962.

    Article  CAS  Google Scholar 

  10. Fokina, N.N., Nefedova, Z.A., Nemova, N.N., and Khalaman, V.V., The modulating role of lipids and their fatty acids in the adaptive function of the mussels Mytilus edulis L. of the White Sea during salinity changes, Zh. Evol. Fiziol. Biokhim., 2007, vol. 43, pp. 379–387.

    CAS  Google Scholar 

  11. Fokina, N.N., Bakhmet, I.N., Shklyarevich, G.A., and Nemova, N.N., Effect of seawater desalination and oil pollution on the lipid composition of blue mussels Mytilus edulis L. from the White Sea, Ecotoxicol. Environ. Saf., 2014, vol. 110, pp. 103–109.

    Article  CAS  Google Scholar 

  12. Fokina, N.N., Ruokolainen, T.R., Nemova, N.N., and Bakhmet, I.N., Changes in lipid composition as a result of acclimation of mussels Mytilus edulis L. to laboratory conditions, Tr. Karel. Nauchn. Tsentra Ross. Akad. Nauk, 2015, no. 11, pp. 76–84.

  13. Fokina, N.N., Bakhmet, I.N., and Nemova, N.N., The combined effect of oil and low salinity of seawater on the lipid composition of the hepatopancreas of the White Sea mussels Mytilus edulis, Tr. Zool. Inst. Ross. Akad. Nauk, 2016, vol. 320, no. 3, pp. 357–366.

    Google Scholar 

  14. Folch, J., Lees, M., and Stanley, J., A simple method for isolation and purification of total lipids from animal tissues, J. Biol. Chem., 1957, vol. 226, pp. 497–509.

    Article  CAS  Google Scholar 

  15. Gutteridge, J.M. and Halliwell, B., The measurement and mechanism of lipid peroxidation in biological systems, Trends Bochem. Sci., 1990, vol. 15, no. 4, pp. 129–135.

    Article  CAS  Google Scholar 

  16. Lesser, M.P., Oxidative stress in marine environments: biochemistry and physiological ecology, Annu Rev. Physiol., 2006, vol. 68, pp. 253–278.

    Article  CAS  Google Scholar 

  17. Lü, X., Bao, X., Huang, Y., Qu, Y., Lu, H., and Lu, Z., Mechanisms of cytotoxicity of nickel ions based on gene expression profiles, Biomaterials, 2009, vol. 30, no. 2, pp. 141–148.

    Article  Google Scholar 

  18. Millward, G.E., Kadam, S., and Jha, A.N., Tissue-specific assimilation, depuration and toxicity of nickel in Mytilus edulis, Environ. Pollut., 2012, vol. 162, pp. 406–412.

    Article  CAS  Google Scholar 

  19. Muyssen, B.T., Brix, K.V., DeForest, D.K., and Janssen, C.R., Nickel essentiality and homeostasis in aquatic organisms, Environ. Rev., 2004, vol. 12, no. 2, pp. 113–131.

    Article  CAS  Google Scholar 

  20. Nemova, N.N., Fokina, N.N., Nefedova, Z.A., Ruokolainen, T.R., and Bakhmet, I.N., Modifications of gill lipid composition in littoral and cultured blue mussels Mytilus edulis L. under the influence of ambient salinity, Polar Record, 2013, vol. 49, no. 3, pp. 272–277.

    Article  Google Scholar 

  21. Pane, E.F., Smith, C., McGeer, J.C., and Wood, C.M., Mechanisms of acute and chronic waterborne nickel toxicity in the freshwater cladoceran, Daphnia magna, Environ. Sci. Technol., 2003, vol. 37, no. 19, pp. 4382–4389.

    Article  CAS  Google Scholar 

  22. Pane, E.F., Haque, A., and Wood, C.M., Mechanistic analysis of acute, ni-induced respiratory toxicity in the rainbow trout (Oncorhynchus mykiss): an exclusively branchial phenomenon, Aquat. Toxicol., 2004, vol. 69, no. 1, pp. 11–24.

    Article  CAS  Google Scholar 

  23. Poonkothai, M. and Vijayavathi, B.S., Nickel as an essential element and a toxicant, Int. J. Environ. Sci., 2012, vol. 1, no. 4, pp. 285–288.

    Google Scholar 

  24. Savorelli, F., Manfra, L., Croppo, M., Tornambe, A., Palazzi, D., Canepa, S., Trentini, P.L., Cicero, A.M., and Faggio, C., Fitness evaluation of Ruditapes philippinarum exposed to Ni, Biol. Trace Element Res., 2017, vol. 177, no. 2, pp. 384–393.

    Article  CAS  Google Scholar 

  25. Sidorov, V.S., Lizenko, E.I., Bolgova, O.M., and Nefedova, Z.A., Fish lipids. 1. Methods of analysis, in Lososevye (Salmonidae) Karelii (Salmonidae of Karelia), no. 1: Ekologiya. Parazitofauna. Biokhimiya (Ecology. Parasite Fauna. Biochemistry), Petrozavodsk: Karel. Fil. Akad. Nauk SSSR, 1972, pp. 150–163.

    Google Scholar 

  26. Westerbom, M., Kilpi, M., and Mustonen, O., Blue mussels, Mytilus edulis, at the edge of the range: population structure, growth and biomass along a salinity gradient in the north-eastern Baltic Sea, Mar. Biol., 2002, vol. 140, no. 5, pp. 991–999.

    Article  Google Scholar 

  27. Wright, D.A., Trace metal and major ion interactions in aquatic animals, Mar. Pollut. Bull., 1995, vol. 31, nos. 1–3, pp. 8–18.

    Article  CAS  Google Scholar 

  28. Zheng, G.H., Liu, C.M., Sun, J.M., Feng, Z.J., and Cheng, C., Nickel-induced oxidative stress and apoptosis in Carassius auratus liver by JNK pathway, Aquat. Toxicol., 2014, vol. 147, pp. 105–111.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the directorate and staff of the Kartesh Biological Station, Zoological Institute, Russian Academy of Sciences, for the opportunity to conduct research at the station and for assistance in the experiments.

Funding

This work was carried out within the framework of State Assignment no. 0218-2019-0076 (no. AAAA-A17-117031710039-3) and supported by the Russian Foundation for Basic Research, project no. 17-04-01431_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Fokina.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by M. Romanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fokina, N.N., Ruokolainen, T.R., Bakhmet, I.N. et al. Modifying Effect of Low Salinity on Ni-Induced Alterations of the Lipid Composition in Mussels Mytilus edulis L.. Biol Bull Russ Acad Sci 47, 674–682 (2020). https://doi.org/10.1134/S1062359020060059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359020060059

Navigation