Skip to main content
Log in

Microstructure of the Primary Remex of Owls (Strigiformes)

  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

An electron microscopic study of the microstructure of the primary remiges in owls (Strigiformes) was conducted using 13 species: Nyctea scandiaca, Bubo bubo, Asio otus, Otus scops, O. sunia, Aegolius funereus, Athene noctua, Glaucidium passerinum, Surnia ulula, Strux aluco, S. uralensis, S. nebulosa, and Tyto alba. Owls have a number of species-specific microstructural primary remex characteristics that are taxonomically important. First of all, these are the structural features of the pennaceous barb, which differ markedly not only at the ordinal, but also at the species level: cross-section configuration, pith architectonics in cross- and longitudinal sections, and cuticular barb structures. This work emphasizes that the identified elements are of taxonomic significance only when comparing the specific, strictly analogous sections of the barbs in different bird species. Based on the present study, we conclude that along with the typical elements of feather architectonics characteristic of representatives of other bird orders, the owls show a number of peculiar microstructural features. Thus, as the result of an analysis of the microstructure of the owls primary remex pennaceous barb vanule, the unique features of the distal barbules and the structure of the apical section of the barb with tightly adjacent and elongate proximal and distal barbules could be distinguished. These characteristics are revealed to cause a dense fleecy structure of the vane dorsal surface and the presence of a complex of peculiar “bunches” that form the cleft edge, i.e., the purely specific traits of the owls feather that are not found in representatives of any other bird orders we have investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bachmann, T., Еmmerlich, J., Baumgartner, W., Schneider, J.M., and Wagner, H., Flexural stiffness of feather shafts: geometry rules over material properties, J. Exp. Biol., 2012, vol. 215, pp. 405–415.

    Article  Google Scholar 

  2. Bachmann, T., Klän, S., Baumgartner, W., Klaas, M., Schröder, W., and Wagner, H., Morphometric characterisation of wing feathers of the barn owl Tyto alba pratincola and the pigeon Columba livia,Front. Zool., 2007, no. 21, pp. 4–23.

  3. Bachmann, T., Wagner, H., and Tropea, C., Inner vane fringes of barn owl feathers reconsidered: morphometric data and functional aspects, J. Anat., 2012, vol. 221, no. 1, pp. 1–8.

    Article  Google Scholar 

  4. Bragulla, H. and Hirschberg, R.M., Horse hooves and bird feathers: two model systems for studying the structure and development of highly adapted integumentary accessory organs—the role of the dermo-epidermal interface for the micro-architecture of complex epidermal structures, J. Exp. Zool. B: Mol. Dev. Evol., 2003, vol. 298B, pp. 140–151.

    Article  Google Scholar 

  5. But’ev, V.T., Zubkov, N.I., Ivanchev, V.P., Koblik, E.A., Kovshar’, A.F., et al., Ptitsy Rossii i sopredel’nykh regionov: Sovoobraznye, Kozodoeobraznye, Strizheobraznye, Raksheobraznye, Udodoobraznye, Dyatloobraznye (Birds of Russia and Adjacent Regions: Strigiformes, Caprimulgiformes, Apodiformes, Coraciiformes, Upupiformes, and Piciformes), Moscow: Tov. Nauch. Izd. KMK, 2005.

  6. Charter, M., Leshem, Y., Izhaki, I., and Roulin, A., Pheomelanin-based colouration is correlated with indices of flying strategies in the barn owl, J. Ornithol., 2015, vol. 156, no. 1, pp. 309–312.

    Article  Google Scholar 

  7. Cieślak, M. and Kwieciński, Z., Moult and breeding of captive northern hawk owls Surnia ulula,Ardea, 2009, vol. 97, no. 4, pp. 571–579.

    Article  Google Scholar 

  8. Dove, C.J., A descriptive and phylogenetic analysis of plumulaceous feather characters in Charadriiformes, Ornithol. Monogr., 2000, vol. 51, pp. 1–163.

    Article  Google Scholar 

  9. Duncan, J.R., Owls of the World: Their Lives, Behavior and Survival, New York: Firefly Books, 2003.

    Google Scholar 

  10. Duncan J.R., Owls of the World, New South Wales, Australia: Chatswood, New Holland Publishers, 2016.

    Google Scholar 

  11. Fadeeva, E.O., Adaptive features of the fine structure of the contour feather of the common swift (Apus apus), Vestn. Mosk. Gos. Pedagog. Univ., Ser. Estestv. Nauki, 2009, no. 2 (4), pp. 48–55.

  12. Fadeeva, E.O., Adaptive features of the fine structure of the contour feather of the snowy owl (Nyctea scandiaca), Vestn. Mosk. Gos. Pedagog. Univ., Ser. Estestv. Nauki, 2011, no. 2 (8), pp. 52–59.

  13. Fadeeva, E.O Features of the fine structure of remiges of Falconidae, Vestn. Mosk. Gos. Pedagog. Univ., Ser. Estestv. Nauki, 2013, no. 1 (11), pp. 40–46.

  14. Fadeeva, E.O., Features of the fine structure of remiges of the white-tailed sea eagle (Haliaeetus albicilla), Vestn. Mosk. Gos. Pedagog. Univ., Ser. Estestv. Nauki, 2013a, no. 2 (12), pp. 28–36.

  15. Fadeeva, E.O., Peculiarities of the contour feather fine structure in the Strigiformes family determined by the flight specificity, Vestn. Mosk. Gos. Pedagog. Univ., Ser. Estestv. Nauki, 2014, no. 4 (16), pp. 32–38.

  16. Fadeeva, E.O., The diagnostic capabilities of the contour feather of birds based on its fine structure, Vestn. Mosk. Gos. Pedagog. Univ., Ser. Estestv. Nauki, 2015, no. 4 (20), pp. 67–77.

  17. Fadeeva, E.O. and Babenko, V.G., Fine structure of the barn owl (Tyto alba (Scopoli, 1769)) remex, Byull. Mosk. O-va. Ispyt. Prir.,Otd. Biol., 2016, vol. 121, no. 6, pp. 18–24.

    Google Scholar 

  18. Fadeeva, E.O. and Babenko, V.G., The capabilities of diagnostics of rare species of falcons of the genus Falco by the fine structure of their primary remiges, Teor. Prakt. Sud. Ekspert., 2017, vol. 12, no. 3, pp. 97–104.

    Article  Google Scholar 

  19. Fadeeva, E.O. and Babenko, V.G., Features of the fine structure of remiges of owls (Strigiformes), in Evolyutsionnaya i funktsional’naya morfologiya pozvonochnykh. Materialy Vserossiiskoi konferentsii i shkoly dlya molodykh uchenykh pamyati Feliksa Yanovicha Dzerzhinskogo (The Evolutionary and Functional Morphology of Vertebrates: Proc. All-Russia Conf. and School for Young Scientists in Memory of Felix Yanovich Dzerzhinsky), Popovkina, A.B., Potapova, E.G., and Kryukova, N.V., Eds., Moscow: Tov. Nauch. Izd. KMK, 2017a, pp. 277–282.

  20. Fadeeva, E.O. and Chernova, O.F., Peculiarities of the contour feather microstructure in the Cordovidae family, Biol. Bull. (Moscow), 2011, vol. 38, no. 4, pp. 369–378.

    Article  Google Scholar 

  21. Galushin, V.M., Drozdov, N.N., Il’ichev, V.D., Konstantinov, V.M., Kurochkin, E.N., et al., Fauna mira: ptitsy (The Fauna of the World: Birds), Moscow: Agropromizdat, 1991.

  22. Gavrilov, E.I., Ivanchev, V.P., Kotov, A.A., Koshelev, A.I., Nazarov, Yu.N., et al., Ptitsy Rossii i sopredel’nykh regionov: Ryabkoobraznye, Golubeobraznye, Kukushkoobraznye, Sovoobraznye (Birds of Russia and Adjacent Regions: Pterocletiformes, Columbiformes, Cuculiformes, and Strigiformes), Moscow: Nauka, 1993.

  23. Gill, F.B., Ornithology, New York: Freeman, 1995.

    Google Scholar 

  24. Handbook of the Birds of the World, vol. 5: Barn-Owls to Hummingbirds, Hoyo, J., Elliott, A., and Sargatal, J., Eds., Barcelona: Lynx Edicions, 1999.

    Google Scholar 

  25. Il’ichev, V.D., Bogoslovskaya, L.S., and Barsova, L.I., The central regions of the auditory system of birds. 2. Adaptive features of auditory nuclei of the medulla oblongata of owls, Zool. Zh., 1974, vol. 53, no. 9, pp. 1352–1362.

    Google Scholar 

  26. Kartashev, N.N., Sistematika ptits. Uchebnoe posobie dlya universitetov (The Systematics of Birds: A Textbook for Universities), Moscow: Vysshaya Shkola, 1974.

  27. Kirillova, I.V., Kotov, A.A., Trofimova, S.S., Zanina, O.G., Lapteva, E.G., et al., Fossil fur as a new source of information on the Ice Age biota, Dokl. Biol. Sci., 2015, vol. 460, no. 5, pp. 48–51.

    Article  CAS  Google Scholar 

  28. Kirillova, I.V., Argant, J., Lapteva, E.G., Korona, O.M., Van der Plicht, J., et al., The diet and environment of mammoths in North-East Russia reconstructed from the contents of their feces, Quat. Int., 2016, vol. 406, pp. 147–161.

    Article  Google Scholar 

  29. Kirillova, I.V., Van der Plicht, J., Gubin, S.V., Zanina, O.G., Chernova, O.F., et al., Taphonomic phenomenon of ancient hair from Glacial Beringia: perspectives for palaeoecological reconstructions, Boreas, 2016a, vol. 45, no. 3, pp. 1–15.

    Google Scholar 

  30. Klän, S., Burgmann, S., Bachmann, T., Klaas, M., Wagner, H., and Schröder, W., Surface structure and dimensional effects on the aerodynamics of an owl-based wing model, Eur. J. Mechanics—B/Fluids, 2012, vol. 33, pp. 58–73.

    Article  Google Scholar 

  31. Koch, U.R. and Wagner, H., Morphometry of auricular feathers of barn owls (Tyto alba), Eur. J. Morphol., 2002, vol. 40, no. 1, pp. 15–21.

    Article  CAS  Google Scholar 

  32. König, C., Weick, F., and Becking, J., Owls of the World, London: Christopher Helm, 2011, 2nd ed.

    Google Scholar 

  33. Kostina, G.N., Sokolov, V.E., Romanenko, E.V., Sidorova, T.N., Tarachevskaya, V.A., et al., The hydrophobicity of structures of the pen of penguins (Aves, Sphenisciformes), Zool. Zh., 1996, vol. 75, no. 2, pp. 237–248.

    Google Scholar 

  34. Lin, W.-L., Lin, S.-M., and Tseng, H.-Y., Colour morphs in the collared pygmy owl Glaucidium brodiei are age-related, not a polymorphism, Ardea, 2014, vol. 102, no. 1, pp. 95–99.

    Article  Google Scholar 

  35. Lucas, A.M. and Stettenheim, P.R., Avian Anatomy. Integument. Agriculture Handbook 362, Washington, D.C.: U.S. Government Printing Office, 1972.

    Google Scholar 

  36. Mikkola, H., Owls of Europe, Carlton, U.K: T&D Poyser, 1983.

    Google Scholar 

  37. Owls of Finland, Saurola, P., Ed., Helsinki, Finland: Kirjayhtymä, 1995.

    Google Scholar 

  38. Prum, R.O. and Dyck, J., A hierarchical model of plumage: morphology, development, and evolution, J. Exp. Zool. B: Mol. Dev. Evol., 2003, vol. 298B, pp. 73–90.

    Article  Google Scholar 

  39. Pukinskii, Yu.B., Zhizn’ sov (Life of Owls), Ser.: Zhizn’ nashikh ptits i zverei (Life of Our Birds and Animals), Leningrad: Leningrad. Univ., 1977.

  40. Romulo, C.L., Geodatabase of global owl species and owl biodiversity analysis, Falls Church, Virginia: Master of Natural Resources Capstone Paper, Virginia Polytechnic Institute and State University, 2012.

  41. Roulin, A., Ring recoveries of dead birds confirm that darker pheomelanic barn owls disperse longer distances, J. Ornithol., 2013, vol. 154, no. 3, pp. 871–874.

    Article  Google Scholar 

  42. Sarradj, E., Fritzsche, C., and Geyer, T., Silent owl flight: bird flyover noise measurements, Am. Inst. Aeronaut. Astronaut. J., 2011, vol. 49, no. 4, pp. 769–779.

    Article  Google Scholar 

  43. Sovy Severnoi Evrazii (Owls of Northern Eurasia), Volkov, S.V., Morozov, V.V., Sharikov, A.V., Eds., Moscow, 2005.

    Google Scholar 

  44. Sovy Severnoi Evrazii: ekologiya, prostranstvennoe i biotopicheskoe raspredelenie (Owls of Northern Eurasia: Ecology and Spatial and Biotopic Distribution), Volkov, S.V., Sharikov, A.V., and Morozov, V.V., Eds., Moscow, 2009.

    Google Scholar 

  45. Stepanyan, L.S., Konspekt ornitologicheskoi fauny Rossii i sopredel’nykh territorii (v granitsakh SSSR kak istoricheskoi oblasti) (Summary of the Ornithological Fauna of Russia and Adjacent Territories (within the Boundaries of the USSR as a Historical Area)), Moscow: Akademkniga, 2003.

  46. Stettenheim, P.R., Structural adaptations in feathers, in Proc. 16th Int. Ornithol. Congr., Canberra: Australian Academy of Science, 1976, pp. 385–401.

  47. Stettenheim, P.R., The integumentary morphology of modern birds—an overview, Am. Zool., 2000, vol. 40, pp. 461–477.

    Google Scholar 

  48. Wang, X., Nudds, R.L., and Dyke, G.J., The primary feather lengths of early birds with respect to avian wing shape evolution, J. Evol. Biol., 2011, vol. 24, pp. 1226–1231.

    Article  CAS  Google Scholar 

  49. Weger, M. and Wagner, H., Distribution of the characteristics of barbs and barbules on barn owl wing feathers, J. Anat., 2017, vol. 230, no. 5, pp. 734–742.

    Article  Google Scholar 

  50. Wink, M., El-Sayed, A.-A., Sauer-Gurth, H., and Gonzalez, J., Molecular phylogeny of owls (Strigiformes) inferred from DNA sequences of the mitochondrial cytochrome b and the nuclear RAG-1 gene, Ardea, 2009, vol. 97, no. 4, pp. 581–591.

    Article  Google Scholar 

  51. Yablokov, A.V. and Valetskii, A.V., Variability of structures of the feather and egg coloration in some birds, Zool. Zh., 1972, vol. 51, no. 2, pp. 248–258.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to A.B. Savinetsky, V.G. Babenko, and P.I. Dudin for providing materials on the primary remiges of Strigiformes. The author is deeply grateful to E.G. Potapova for her assistance in preparing the manuscript for publication.

This study was carried out using the equipment of the Center for Common Use for Instrumental Analysis in Ecology, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences.

Funding

This work was conducted within the framework of the theme of State Tasks no. 0109-2018-0072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Fadeeva.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by T. Kuznetsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadeeva, E.O. Microstructure of the Primary Remex of Owls (Strigiformes). Biol Bull Russ Acad Sci 46, 780–789 (2019). https://doi.org/10.1134/S1062359019070045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359019070045

Keywords:

Navigation