Skip to main content
Log in

Astaxanthin Has a Potential Role in Antioxidation and Oxidative Damage Repair in UVC Irradiated Mice

  • ANIMAL AND HUMAN PHYSIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The anti-oxidative activity and oxidative damage repair potential of dietary AS in UVC irradiated mice was studied in present study. The activities of superdismutase (SOD) and glutathione peroxidase (GPx) in the liver and serum of mice increased dramatically at treatment with a dose of 100 mg/kg bodyweight AS during 10 days UVC light irradiation in comparison with the control group. Concurrently, the gene expression levels of sod1, sod2, gpx1 and gpx2, as determined by real-time quantitative PCR, were also up-regulated in the liver in the AS treated group during the UVC irradiation. For further understanding the oxidative damage repair potential of dietary AS in UVC irradiated mice, after 7 days AS and VE treatment, the SOD and GPx activities also increased significantly in liver and serum in mice fed with AS compared to the UVC light treated group. The results obtained here strongly suggested that AS reduces the UVC irradiation oxidative stress dramatically in short time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Umeno, A., Biju, V., and Yoshida, Y., In vivo ROS production and use of oxidative stress-derived biomarkers to detect the onset of diseases such as Alzheimer’s disease, Parkinson’s disease, and diabetes, Free Radical Res., 2017, vol. 51, no. 4, p. 413.

    Article  CAS  Google Scholar 

  2. Pignataro, D., Francia, S., Zanetta, F., et al., A missense MT-ND5 mutation in differentiated Parkinson disease cytoplasmic hybrid induces ROS-dependent DNA damage response amplified by DROSHA, Sci. Rep., 2017, vol. 7, no. 1, p. 9528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Regoli, F. and Giuliani, M.E., Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms, Mar. Environ. Res., 2014, vol. 93, no. 1, pp. 106–117.

    Article  CAS  PubMed  Google Scholar 

  4. Kwiecien, S., Jasnos, K., Magierowski, M., et al., Lipid peroxidation, reactive oxygen species and antioxidative factors in the pathogenesis of gastric mucosal lesions and mechanism of protection against oxidative stress-induced gastric injury, J. Physiol. Pharmacol., 2014, vol. 65, no. 5, pp. 613–622.

    CAS  PubMed  Google Scholar 

  5. Yin, M., Erwin, G.M.D, Wheeler, M.D., et al., Alcohol-induced free radicals in mice: Direct toxicants or signaling molecules?, Hepatology, 2001, vol. 34, no. 5, pp. 935–942.

    Article  CAS  PubMed  Google Scholar 

  6. Sun, L., Zhao, Z.Y., Hu, J., and Zhou, X.L., Potential association of lead exposure during early development of mice with alteration of hippocampus nitric oxide levels and learning memory, Biomed. Environ. Sci., 2005, vol. 18, no. 6, pp. 375–388.

    CAS  PubMed  Google Scholar 

  7. Merwald, H., Klosner, G., Kokesch, C., et al., UVA-induced oxidative damage and cytotoxicity depend on the mode of exposure, J. Photochem. Photobiol., B, 2005, vol. 79, no. 3, pp. 197–207.

    Article  CAS  Google Scholar 

  8. He, S., Ou, R., Wang, W., et al., Camptosorus sibiricus Rupr. aqueous extract prevents lung tumorigenesis via dual effects against ROS and DNA damage, J. Ethnopharmacol., 2017, vol. 28, pp. 44–56.

    Google Scholar 

  9. Martinez, R.M., Pinhoribeiro, F.A., Steffen, V.S., et al., Naringenin inhibits UVB irradiation-induced inflammation and oxidative stress in the skin of hairless mice, J. Nat. Prod., 2015, vol. 78, no. 7, pp. 1647–1655.

    Article  CAS  PubMed  Google Scholar 

  10. Mansoori, A.A. and Jain, S.K., Molecular links between alcohol and tobacco induced DNA damage, gene polymorphisms and pathophysiological consequences: a systematic review of hepatic carcinogenesis, Asian Pac. J. Cancer Prevent., 2015, vol. 16, no. 12, pp. 4803–4812.

    Article  Google Scholar 

  11. Svobodova, A., Walterova, D., and Vostalova, J., Ultraviolet light induced alteration to the skin, Biomed. Pap. Med. Fac. Palacky Univ. Olomouc, 2006, vol. 150, no. 1, pp. 25–38.

  12. Kuluncsics, Z., Perdiz, D., Brulay, E., Muel, B., and Sage, E., Wavelength dependence of ultraviolet-induced DNA damage distribution: involvement of direct or indirect mechanisms and possible artifacts, J. Photochem. Photobiol., B, 1999, vol. 49, pp. 71–80.

    Article  CAS  Google Scholar 

  13. Guyton, K.Z., Xu, Q., and Holbrook, N.J., Induction of the mammalian stress response gene GADD153 by oxidative stress: role of AP-1 element, Biochem. J., 1996, vol. 314, pp. 547–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lim, B.P., Nagao, A., Terao, J., Tanaka, K., Suzuki, T., and Takama, K., Antioxidant activity of xanthophylls on peroxyl radical-mediated phospholipid peroxidation, Biochim. Biophys. Acta, 1992, vol. 1126, pp. 178–184.

    Article  CAS  PubMed  Google Scholar 

  15. Ni, Y., Nagashimada, M., Zhuge, F., et al., Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: a comparison with vitamin E, Sci. Rep., 2015, vol. 5, p. 17192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Niki, E., Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence, Free Radical Biol. Med., 2014, vol. 66, no. 2, pp. 3–12.

    Article  CAS  Google Scholar 

  17. Hussein, G., Sankawa, U., Goto, H., Matsumoto, K., and Watanabe, H., Astaxanthin, a carotenoid with potential in human health and nutrition, J. Nat. Prod., 2006, vol. 69, no. 3, pp. 443–449.

    Article  CAS  PubMed  Google Scholar 

  18. Al-Amin, M.M., Akhter, S., Hasan, A.T., et al., The antioxidant effect of astaxanthin is higher in young mice than aged: a region specific study on brain, Metab. Brain Dis., 2015, vol. 30, no. 5, pp. 1237–1246.

    Article  CAS  PubMed  Google Scholar 

  19. Endo, Y., Fu, Z., Abe, K., et al., Dietary protein quantity and quality affect rat hepatic gene expression, J. Nutr., 2002, vol. 132, no. 12, p. 3632.

    Article  CAS  PubMed  Google Scholar 

  20. Bieri, J.G., AIN-76 diet, J. Nutr., 1979, vol. 109, no. 5, p. 925.

    Article  CAS  PubMed  Google Scholar 

  21. Liu, Y., Wang, J., Wei, Y., et al., Induction of time-dependent oxidative stress and related transcriptional effects of perfluorododecanoic acid in zebrafish liver, Aquat. Toxicol., 2008, vol. 89, no. 4, pp. 242–250.

    Article  CAS  PubMed  Google Scholar 

  22. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method, Methods, 2001, vol. 25, no. 4, pp. 402–408.

    Article  CAS  Google Scholar 

  23. Münzel, T. and Daiber, A., Environmental stressors and their impact on health and disease with focus on oxidative stress, Antioxid. Redox Signaling, 2018, vol. 28, no. 9, p. 735.

    Article  CAS  Google Scholar 

  24. Valavanidis, A., Vlahogianni, T., Dassenakis, M., et al., Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants, Ecotoxicol. Environ. Saf., 2006, vol. 64, no. 2, pp. 178–189.

    Article  CAS  PubMed  Google Scholar 

  25. Schieber, M. and Chandel, N.S., ROS function in redox signaling and oxidative stress, Curr. Biol., 2014, vol. 24, no. 10, pp. 453–462.

    Article  CAS  Google Scholar 

  26. Choi, S.-I., Lee, J.-H., Kim, J.-M., et al., Ulmus macrocarpa hance extracts attenuated H2O2 and UVB-induced skin photo-aging by activating antioxidant enzymes and inhibiting MAPK pathways, Int. J. Mol. Sci., 2017, vol. 18, no. 6, p. 1200.

    Article  CAS  PubMed Central  Google Scholar 

  27. Bresciani, G., Cruz, I.B.M.D., and González-Gallego, J., Chapter four—Manganese superoxide dismutase and oxidative stress modulation, Adv. Clin. Chem., 2015, vol. 68, pp. 87–130.

    Article  CAS  PubMed  Google Scholar 

  28. O’Connor, I. and O’Brien, N., Modulation of UVA light-induced oxidative stress by beta-carotene, lutein, and astaxanthin in cultured fibroblasts, J. Dermatol. Sci., 1998, vol. 16, no. 3, pp. 226–230.

    Article  PubMed  Google Scholar 

  29. Cadet, J. and Douki, T., Formation of UV-induced DNA damage contributing to skin cancer development, Photochem. Photobiol. Sci., 2018, no. 2.

  30. Ling, L.B., Chang, Y., Liu, C.W., et al., Oxidative stress intensity-related effects of cadmium (Cd) and paraquat (PQ) on UV-damaged-DNA binding and excision repair activities in zebrafish (Danio rerio) embryos, Chemosphere, 2017, vol. 167, pp. 10–18.

    Article  CAS  PubMed  Google Scholar 

  31. Bhattacharya, S., Reactive oxygen species and cellular defense system, in Free Radicals in Human Health and Disease, New Delhi: Springer India, 2015, pp. 17–29.

    Google Scholar 

  32. Niki, E., Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence, Free Radical Biol. Med., 2014, vol. 66, no. 2, pp. 3–12.

    Article  CAS  Google Scholar 

  33. Silva, F.O.D., Tramonte, V.L.C.G., Parisenti, J., et al., Litopenaeus vannamei, muscle carotenoids versus, astaxanthin: A comparison of antioxidant activity and in vitro, protective effects against lipid peroxidation, Food Biosci., 2015, vol. 9, pp. 12–19.

    Article  CAS  Google Scholar 

  34. Yi, X., Shen, H., Li J., et al., Effects of dietary vitamin E and astaxanthin on growth, skin colour and antioxidative capacity of large yellow croaker Larimichthys crocea, Aquacult. Nutr., 2018, vol. 24, no. 1, pp. 472–480.

    Article  CAS  Google Scholar 

  35. Nakano, T., Kanmuri, T., Sato, M., et al., Effect of astaxanthin rich red yeast (Phaffia rhodozyma) on oxidative stress in rainbow trout, Biochim. Biophys. Acta, Gen. Subj., 1999, vol. 1426, no. 1, pp. 119–125.

    Article  CAS  Google Scholar 

  36. Miki, W., Biological functions and activities of animal carotenoids, Pure Appl. Chem., 1991, vol. 63, no. 1, pp. 141–146.

    Article  CAS  Google Scholar 

  37. Yang, C., Zhang, L., Zhang, H., et al., Rapid and efficient conversion of all-E-astaxanthin to 9Z- and 13Z-isomers and assessment of their stability and antioxidant activities, J. Agric. Food Chem., 2017, vol. 65, no. 4, pp. 818–826.

    Article  CAS  PubMed  Google Scholar 

  38. Østerlie, M., Bjerkeng, B., and Liaaenjensen, S., Plasma appearance and distribution of astaxanthin E/Z and R/S isomers in plasma lipoproteins of men after single dose administration of astaxanthin, J. Nutr. Biochem., 2000, vol. 11, no. 10, pp. 482–490.

    Article  PubMed  Google Scholar 

  39. Sheader, D.L., Williams, T.D., Lyons, B.P., et al., Oxidative stress response of European flounder (Platichthys flesus) to cadmium determined by a custom cDNA microarray, Mar. Environ. Res., 2006, vol. 62, no. 1, pp. 33–44.

    Article  CAS  PubMed  Google Scholar 

  40. Woo, S., Yum, S., Kim, D.-W., et al., Transcripts level responses in a marine medaka (Oryzias javanicus) exposed to organophosphorus pesticide, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 2009, vol. 149, no. 3, pp. 427–432.

    Google Scholar 

  41. Lara-Nuñez, A., Romero-Romero, T., Ventura, J.L., et al., Allelochemical stress causes inhibition of growth and oxidative damage in Lycopersicon esculentum Mill., Plant Cell Environ., 2006, vol. 29, no. 11, pp. 2009–2016.

    Article  CAS  PubMed  Google Scholar 

  42. Pan, L., Zhang, S., Gu, K., et al., Preparation of astaxanthin-loaded liposomes: characterization, storage stability and antioxidant activity, CyTA–J. Food, 2018, vol. 16, no. 1, pp. 607–618.

    Article  CAS  Google Scholar 

  43. Rao, A.R., Sarada, R., Shylaja, M.D., et al., Evaluation of hepatoprotective and antioxidant activity of astaxanthin and astaxanthin esters from microalga-Haematococcus pluvialis, J. Food Sci. Technol., 2015, vol. 52, no. 10, pp. 6703–6710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Feng, Y., Chu, A., Luo, Q., et al., The protective effect of astaxanthin on cognitive function via inhibition of oxidative stress and inflammation in the brains of chronic T2DM rats, Front. Pharmacol., 2018, vol. 9, p. 748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Santocono, M., Zurria, M., Berrettini, M., et al., Influence of astaxanthin, zeaxanthin, and lutein on DNA damage and repair in UVA-irradiated cells, J. Photochem. Photobiol., B, 2006, vol. 85, no. 3, pp. 205–215.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Program for Changjiang Scholars and Innovative Research Team in University (IRT_17R97).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengwei Fu or Yuanxiang Jin.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yinhua Ni, Ma, L., Wu, L. et al. Astaxanthin Has a Potential Role in Antioxidation and Oxidative Damage Repair in UVC Irradiated Mice. Biol Bull Russ Acad Sci 45, 580–588 (2018). https://doi.org/10.1134/S1062359018660020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359018660020

Keywords:

Navigation