Skip to main content
Log in

The effects of inhibitors of Rho- and tyrosine c-Src-kinases on serotonin-induced constrictions of the aorta and mesenteric artery in rats

  • Human and Animal Physiology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

We found that the inhibitor of Rho-kinase fasudil selectively inhibited constriction of isolated rings of the aorta and mesenteric artery in rats in response to application of the agonists of 5HT2A-(DOI and TBC-2) and 5HT1A-receptors (8-OH-DPAT) and did not influence vasoconstriction induced by serotonin. We demonstrate for the first time that application of the agonists of 5HT2C-receptors (MK 212 and SCH 23390) did not influence the tone of “intact” vessels. The marked vasoconstrictory effect of the agonists of 5HT2C-receptors was observed in the vessels preconstricted due to angiotensin II or vasopressin. We found that the inhibitor of Rho-kinase did not influence negatively on MK 212 or SCH 23390-induced constriction of isolated rings of the aorta and mesenteric artery in rats. We suppose that, in the presence of fasudil, serotonin induces constriction of vessels through the interaction with 5HT2C-receptors and signal transduction from these receptors does not involve Rho-kinase activity. We found that fasudil attenuated vasoconstriction induced by norepinephrine and vasopressin by 40%. We demonstrated that tyrosine c-Src-kinase plays the most important role in signal transduction from 5HT-receptors because its effects are specific with relation to these receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alioua, A., Mahajan, A., Nishimaru, K., et al., Coupling of c-Src to large conductance voltage- and Ca2+-activated K+ channels as a new mechanism of agonist-induced vasoconstriction, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, pp. 14560–14565.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Armbruster, B.N. and Roth, B.L., Mining the receptorome, J. Biol. Chem., 2005, vol. 280, pp. 5129–5132.

    Article  PubMed  CAS  Google Scholar 

  • Becamel, C., Gavarini, S., Chanrion, B., et al., The serotonin 5-HT2A and 5-HT2C receptors interact with specific sets of PDZ proteins, J. Biol. Chem., 2004, vol. 279, no. 19, pp. 20257–20266.

    Article  PubMed  CAS  Google Scholar 

  • Bockaert, J., Roussignol, G., Becamel, C., et al., GPCR-interacting proteins (GIPs): nature and functions, Biochem. Soc. Trans., 2004, vol. 32, pp. 851–855.

    Article  PubMed  CAS  Google Scholar 

  • Calama, E., Moran, A., Ortiz de Urbina, A.V., et al., Vasoconstrictor responses to 5-hydroxytryptamine in the autoperfused hindquarters of spontaneously hypertensive rats, Pharmacology, 2004, vol. 71, pp. 66–72.

    Article  PubMed  CAS  Google Scholar 

  • Dai, Y., Dudek, N.L., Li, Q., and Muma, N.A., Phospholipase C, Ca2+, and calmodulin signaling are required for 5-HT2A receptor-mediated transamidation of rac1 by transglutaminase, Psychopharmacology (Berl.), 2011, vol. 213, nos. 2–3, pp. 403–412.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davis, R.P., Pattison, J., Thompson, J.M., et al., 5-Hydroxytryptamine (5-HT) reduces total peripheral resistance during chronic infusion: direct arterial mesenteric relaxation is not involved, BMC Pharmacol., 2012, vol. 12, p. 4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Estévez, M.A., Henderson, J.A., Ahn, D., et al., The neuronal RhoA GEF, Tech, interacts with the synapticmulti-PDZ-domain-containing protein, MUPP1, J. Neurochem., 2008, vol. 106, no. 3, pp. 1287–1297.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandez, M.M., Moran, A., Martin, M.L., and San Roman L., Mesenteric vasoconstrictor response to 5-hydroxytryptamine in the in situ blood autoperfused rat mesentery: involvement of 5-HT2B and/or 5-HT2C receptor activation, Eur. J. Pharmacol., 2000, vol. 401, pp. 221–227.

    Article  PubMed  CAS  Google Scholar 

  • Fukata, Y., Amano, M., and Kaibuchi, K., Rho-Rhokinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells, Trends Pharmacol. Sci., 2001, vol. 22, pp. 32–39.

    Article  PubMed  CAS  Google Scholar 

  • Fuso, L., Baldi, F., and Di Perna, A., Therapeutic strategies in pulmonary hypertension, Front. Pharmacol., 2011, vol. 2, no. 21, pp. 1–15.

    Google Scholar 

  • Gavarini, S., Becamel, C., Chanrion, B., et al., Molecular and functional characterization of proteins interacting with the C-terminal domains of 5-HT2 receptors: emergence of 5-HT2 “receptosomes,” Biol. Cell., 2004, vol. 96, pp. 373–381.

    Article  PubMed  CAS  Google Scholar 

  • Ghisdal, P., Vandenberg, G., and Morel, N., Rho-dependent kinase is involved in agonist-activated calcium entry in rat arteries, J. Physiol., 2003, vol. 551, no. 3, pp. 855–867.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hall, R.A. and Lefkowitz, R.J., Regulation of G protein-coupled receptor signaling by scaffold proteins, Circ. Res., 2002, vol. 91, pp. 672–680.

    Article  PubMed  CAS  Google Scholar 

  • Hirano, K., Hirano, M., and Kanaide, H., Regulation of myosin phosphorylation and myofilament Ca2+ sensitivity in vascular smooth muscle, J. Smooth Muscle Res., 2004, vol. 40, no. 6, pp. 219–236.

    Article  PubMed  Google Scholar 

  • Hirano, K., Current topics in the regulatory mechanism underlying the Ca2+ sensitization of the contractile apparatus in vascular smooth muscle, J. Pharmacol. Sci., 2007, vol. 104, pp. 109–115.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer, D., Clarke, D.E., Fozard, J.R., et al., International union of pharmacology classification of receptors for 5-hydroxytryptamine (serotonin), Pharmacol. Rev., 1994, vol. 46, pp. 157–203.

    PubMed  CAS  Google Scholar 

  • Kozhevnikova, L.M. and Avdonin, P.V., Disturbances in hormonal regulation of vascular tone during traumatic shock, Bull. Exp. Biol. Med., 2006, vol. 141, no. 5, pp. 574–577.

    Article  PubMed  CAS  Google Scholar 

  • Kozhevnikova, L.M. and Avdonin, P.V., Agonist of serotonin 5HT1A-receptors 8-OH-DPAT increases the force of contraction of rat aorta and mesenteric artery in the presence of endothelin-1 or vasopressin and causes relaxation of the vessels preconstricted with noradrenaline, Biol. Bull. (Moscow), 2010, vol. 37, no. 1, pp. 35–43.

    Article  CAS  Google Scholar 

  • Kozhevnikova, L.M. and Avdonin, P.V., Involvement of calmodulin in realization of vasoconstrictive effects of serotonin and norepinephrine, Biol. Bull. (Moscow), 2012, vol. 39, no. 4, pp. 360–367.

    Article  CAS  Google Scholar 

  • Kozhevnikova, L.M., Avdonin, P.P., Sukhanova, I.F., and Avdonin, P.V., Role of desensitization of glucocorticoid receptors in the development of vascular resistance to endogenous vasoconstrictors in traumatic shock, Vestn. Ross. Akad. Med. Nauk, 2007, no. 6, pp. 3–8.

    Google Scholar 

  • Kozhevnikova, L.M., Avdonin, P.P., Sukhanova, I.F., and Avdonin, P.V., Inversion of the response to serotonin in rats with traumatic shock, Bull. Exp. Biol. Med., 2008, vol. 145, no. 3, pp. 298–301.

    Article  PubMed  CAS  Google Scholar 

  • Kozhevnikova, L.M., Davydova, A.G., and Avdonin, P.V., Plasma membrane depolarization and activation of receptors for endogenous vasoconstrictors as possible mechanisms of potentiation of vasoconstrictive response to serotonin in traumatic shock in rats, Biol. Bull. (Moscow), 2009, vol. 36, no. 3, pp. 285–297.

    Article  CAS  Google Scholar 

  • Labasque, M., Reiter, E., Becamel, C., et al., Physical interaction of calmodulin with the 5-hydroxytryptamine2C receptor C-terminus is essential for G protein-independent, arrestin-dependent receptor signaling, Mol. Biol. Cell, 2008, vol. 19, no. 11, pp. 4640–4650.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lin, L., Tran, T., Hu, S., et al., RHGF-2 is an essential Rho-1 specific RhoGEF that binds to the multi-PDZ domain scaffold protein MPZ-1 in Caenorhabditis elegans, PLoS One, 2012, vol. 7, no. 2, p. e31499.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Loirand, G. and Pacaud, P., The role of rho protein signaling in hypertension, Nat. Rev. Cardiol., 2010, vol. 7, pp. 637–647.

    Article  PubMed  CAS  Google Scholar 

  • Lu, R., Alioua, A., Kumar, Y., et al., c-Src tyrosine kinase, a critical component for 5-HT2A receptor-mediated contraction in rat aorta, J. Physiol., 2008, vol. 586, no. 16, pp. 3855–3869.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • MacLean M.R. Pulmonary hypertension and the serotonin hypothesis: where are we now?, Int. J. Clin. Pract. Suppl., 2007, vol. 156, pp. 27–31.

    Article  PubMed  CAS  Google Scholar 

  • MacLean, M.R. and Dempsie, Y., The serotonin hypothesis of pulmonary hypertension revisited, Adv. Exp. Med. Biol., 2010, vol. 661, pp. 309–322.

    Article  PubMed  CAS  Google Scholar 

  • Magalhaes, A., Dunn, H., and Ferguson, S.G., Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins, Br. J. Pharmacol., 2012, vol. 165, no. 6, pp. 1717–1736.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nagaoka, T., Gebb, S.A., Karoor, V., et al., Involvement of RhoA/Rho kinase signaling in pulmonary hypertension of the fawn-hooded rat, J. Appl. Physiol., 2006, vol. 100, pp. 996–1002.

    Article  PubMed  CAS  Google Scholar 

  • Noma, K., Oyama, N., and Liao, J.K., Physiological role of rocks in the cardiovascular system, Am. J. Physiol. Cell. Physiol., 2006, vol. 290, no. 3, pp. C661–C668.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nunes, K.P., Rigsby, C.S., and Webb, R.C., RhoA/Rhokinase and vascular diseases: what is the link?, Cell. Mol. Life Sci., 2010, vol. 67, no. 22, pp. 3823–3836.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Oda, Y., Renaux, B., Bjorge, J., et al., cSrc is a major cytosolic tyrosine kinase in vascular tissue, Can. J. Physiol. Pharmacol., 1999, vol. 77, pp. 606–617.

    Article  PubMed  CAS  Google Scholar 

  • Ogden, K., Thomson, J.M., Hickner, Z., et al., A new signaling paradigm for serotonin: use of Crk-associated substrate in arterial contraction, Am. J. Physiol. Heart. Circ. Physiol., 2006, vol. 291, no. 6, pp. H2857–H2863.

    Article  PubMed  CAS  Google Scholar 

  • Raymond, J.R., Turner, J.H., Gelasco, A.K., et al., 5-HT Receptor signal transduction pathways, in The Receptors: The Serotonin Receptors: From Molecular Pharmacology to Human Therapeutics, Roth, B.L., Ed., Totowa; New Jersey: Humana Press Inc., 2006, pp. 143–207.

    Google Scholar 

  • Satoh, K., Fukumoto, Y., and Shimokawa, H., Rho-kinase: important new therapeutic target in cardiovascular diseases, Am. J. Physiol. Heart Circ. Physiol., 2011, vol. 301, pp. H287–H296.

    Article  PubMed  CAS  Google Scholar 

  • Smith, B.M., Thomsen, W.J., and Grottick, A.J., The potential use of selective 5-HT2C agonists in treating obesity, Expert. Opin. Investig. Drugs, 2006, vol. 15, pp. 257–266.

    Article  PubMed  CAS  Google Scholar 

  • Somlyo, A.P. and Somlyo, A.V., Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by g proteins, kinases, and myosin phosphatase, Physiol. Rev., 2003, vol. 83, no. 4, pp. 1325–1358.

    PubMed  CAS  Google Scholar 

  • Surma, M., Wei, L., and Shi, J.K., Rho kinase as a therapeutic target in cardiovascular disease, Future Cardiol., 2011, vol. 7, no. 5, pp. 657–671.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tiniakov, R. and Scrogin, K.E., The spleen is required for 5-HT1A receptor agonist-mediated increases in mean circulatory filling pressure during hemorrhagic shock in the rat, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2009, vol. 296, no. 5, pp. R1392–R1401.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tiniakov, R., Osei-Owusu, P., and Scrogin, K.E., The 5-hydroxytryptamine1A receptor agonist, (+)-8-hydroxy-2-(di-n-propylamino)-tetralin, increases cardiac output and renal perfusion in rats subjected to hypovolemic shock, J. Pharmacol. Exp. Ther., 2007, vol. 320, no. 2, pp. 811–818.

    Article  PubMed  CAS  Google Scholar 

  • Turner, J.H., Gelasco, A.K., and Raymond, J.R., Calmodulin interacts with the third intracellular loop of the serotonin 5-hydroxytryptamine1A receptor at two distinct sites: putative role in receptor phosphorylation by protein kinase C, J. Biol. Chem., 2004, vol. 279, pp. 17027–17037.

    Article  PubMed  CAS  Google Scholar 

  • Turner, J.H. and Raymond, J.R., Interaction of calmodulin with the serotonin 5-hydroxytryptamine2A receptor. A putative regulator of g protein coupling and receptor phosphorylation by protein kinase C, J. Biol. Chem., 2005, vol. 280, no. 35, pp. 30741–30750.

    Article  PubMed  CAS  Google Scholar 

  • Wang, D., Post, M., and Cutz, E., Expression of serotonin receptor 2C in rat type II pneumocytes, Am. J. Resp. Cell. Mol., 1999, vol. 20, pp. 1175–1180.

    Article  CAS  Google Scholar 

  • Watts, S.W., 5-HT in systemic hypertension: foe, friend or fantasy?, Clin. Sci. (Lond.), 2005, vol. 108, no. 5, pp. 399–412.

    Article  CAS  Google Scholar 

  • Watts, S.W., Yang, P., Banes, A.K., and Baez, M., Activation of Erk mitogen-activated protein kinase proteins by vascular serotonin receptors, J. Cardiovasc. Pharmacol., 2001, vol. 38, no. 4, pp. 539–551.

    Article  PubMed  CAS  Google Scholar 

  • Watts, S.W., Priestley, J.R., and Thompson, J.M., Serotonylation of vascular proteins important to contraction, PLoS One, 2009, vol. 4, no. 5, p. e5682.

    Article  PubMed  PubMed Central  Google Scholar 

  • Watts, S., Morrison, S., Davis, R.P., and Barman, S.M., Serotonin and blood pressure regulation, Pharmacol. Rev., 2012, vol. 64, no. 2, pp. 359–388.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wirth, A., Rho kinase and hypertension, Biochim. Biophys. Acta, 2010, vol. 1802, no. 12, pp. 1276–1284.

    Article  PubMed  CAS  Google Scholar 

  • Wong, W.K., Knowles, J.A., and Morse, J.H., Bone morphogenetic protein receptor type II C-terminus interacts with c-Src implication for a role in pulmonary arterial hypertension, Am. J. Respir. Cell. Mol. Biol., 2005, vol. 33, no. 5, pp. 438–446.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang, B., Liu, Y., Luo, Y., et al., Alteration of serotonin 2C receptor expression in the aorta and the pulmonary artery in rats exposed to hypoxia, Chin. J. Physiol., 2008, vol. 51, no. 6, pp. 338–347.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Kozhevnikova.

Additional information

Original Russian Text © L.M. Kozhevnikova, A.A. Moskovtsev, M.V. Mesitov, 2014, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2014, No. 5, pp. 500–509.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozhevnikova, L.M., Moskovtsev, A.A. & Mesitov, M.V. The effects of inhibitors of Rho- and tyrosine c-Src-kinases on serotonin-induced constrictions of the aorta and mesenteric artery in rats. Biol Bull Russ Acad Sci 41, 452–460 (2014). https://doi.org/10.1134/S1062359014050069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359014050069

Keywords

Navigation