Skip to main content
Log in

Rapid and Highly Efficient Removal of Tetracycline by a Melamine-Based Covalent Organic Framework: Comprehensive Density Functional Theory and Experimental Studies

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, a melamine-based covalent organic framework (COF) was synthesized. Then its performance as a potential adsorbent for the removal of tetracycline (TC) was scrutinized by density functional theory computations. The theoretical results showed that TC interaction with COF is experimentally possible, exothermic, spontaneous, and thermodynamically favorable. The adsorption mechanism was checked out by natural bond orbital computations, the results of which demonstrated that TC interaction with COF is a physisorption process. The influence of temperature and the presence of the solvent was also investigated computationally, and the results showed that these parameters do not affect the interactions. Afterward, all effective operational parameters, including the amount of COF, agitation time, and pH, were optimized by the one-factor-at-a-time method to achieve the highest efficiency. Under optimum conditions, the experimental data were fitted to Langmuir, Freundlich, and Sips models. The TC adsorption behavior was well-described by the Sips isotherm with a maximum adsorption capacity of 168.98 mg/g. The desorption process was also discussed, and a mixture of methanol and acetic acid was selected as the most suitable desorption solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Gu, C. and Karthikeyan, K., Environ. Sci. Technol., 2005, vol. 39, p. 2660.

    Article  CAS  PubMed  Google Scholar 

  2. Daghrir, R. and Drogui, P., Environ. Chem. Lett., 2013, vol. 11, p. 209.

    Article  CAS  Google Scholar 

  3. Manaia, C.M., Macedo, G., Fatta-Kassinos, D., and Nunes, O.C., Appl. Microbiol. Biotechnol., 2016, vol. 100, p. 1543.

    Article  CAS  PubMed  Google Scholar 

  4. Qiao, M., Ying, G.-G., Singer, A.C., and Zhu, Y.-G., Environ. Int., 2018, vol. 110, p. 160.

    Article  CAS  PubMed  Google Scholar 

  5. Surette, M.D. and Wright, G.D., Annu. Rev. Microbiol., 2017, vol. 71, p. 309.

    Article  CAS  PubMed  Google Scholar 

  6. Patel, M., Kumar, R., Kishor, K., Mlsna, T., Pittman, C.U., Jr., and Mohan, D., Chem. Rev., 2019, vol. 119, p. 3510.

    Article  CAS  PubMed  Google Scholar 

  7. Ahmed, M.B., Zhou, J.L., Ngo, H.H., and Guo, W., Sci. Total. Environ., 2015, vol. 532, p. 112.

    Article  CAS  PubMed  Google Scholar 

  8. Boreen, A.L., Arnold, W.A., and McNeill, K., Aquat. Sci., 2003, vol. 65, p. 320.

    Article  CAS  Google Scholar 

  9. Klavarioti, M., Mantzavinos, D., and Kassinos, D., Environ. Int., 2009, vol. 35, p. 402.

    Article  CAS  PubMed  Google Scholar 

  10. Alfonso-Muniozguren, P., Serna-Galvis, E.A., Bussemaker, M., Torres-Palma, R.A., and Lee, J., Ultrason. Sonochem., 2021, vol. 76, p. 105656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ikehata, K., Jodeiri Naghashkar, N., and Gamal El-Din, M., Ozone: Sci. Eng., 2006, vol. 28, p. 353.

    Article  CAS  Google Scholar 

  12. Fatta-Kassinos, D., Vasquez, M.I., and Kümmerer, K., Chemosphere, 2011, vol. 85, p. 693.

    Article  CAS  PubMed  Google Scholar 

  13. Molinari, R., Pirillo, F., Loddo, V., and Palmisano, L., Catal. Today, 2006, vol. 118, p. 205.

    Article  CAS  Google Scholar 

  14. Alalm, M.G., Tawfik, A., and Ookawara, S., J. Environ. Chem. Eng., 2015, vol. 3, p. 46.

    Article  CAS  Google Scholar 

  15. Onesios, K.M., Yu, J.T., and Bouwer, E.J., Biodegradation, 2009, vol. 20, p. 441.

    Article  CAS  PubMed  Google Scholar 

  16. de Andrade, J.R., Oliveira, M.F., da Silva, M.G., and Vieira, M.G., Ind. Eng. Chem. Res., 2018, vol. 57, p. 3103.

    Article  CAS  Google Scholar 

  17. Zhao, H., Liu, X., Cao, Z., Zhan, Y., Shi, X., Yang, Y., Zhou, J., and Xu, J., J. Hazard. Mater., 2016, vol. 310, p. 235.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, D., Yin, J., Zhao, J., Zhu, H., and Wang, C., J. Environ. Chem. Eng., 2015, vol. 3, p. 1504.

    Article  Google Scholar 

  19. Lin, Y., Xu, S., and Li, J., Chem. Eng. J., 2013, vol. 225, p. 679.

    Article  CAS  Google Scholar 

  20. Zhao, R., Ma, T., Zhao, S., Rong, H., Tian, Y., and Zhu, G., Chem. Eng. J., 2020, vol. 382, p. 122893.

    Article  CAS  Google Scholar 

  21. Peiris, C., Gunatilake, S.R., Mlsna, T.E., Mohan, D., and Vithanage, M., Bioresour. Technol., 2017, vol. 246, p. 150.

    Article  CAS  PubMed  Google Scholar 

  22. Premarathna, K., Rajapaksha, A.U., Adassoriya, N., Sarkar, B., Sirimuthu, N.M., Cooray, A., Ok. Y.S., and Vithanage, M., J. Environ. Manage, 2019, vol. 238, p. 315.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, L., Song, X., Liu, X., Yang, L., Pan, F., and Lv, J., Chem. Eng. J., 2011, vol. 178, p. 26.

    Article  CAS  Google Scholar 

  24. Lavrukhina, O., Amelin, V., Kish, L., Tretyakov, A., and Pen’kov, T., J. Anal. Chem., 2022, vol. 77, p. 1349.

    Article  CAS  Google Scholar 

  25. Cherkashina, K., Pochivalov, A., Shakirova, F., Shishov, A.Y., and Bulatov, A., J. Anal. Chem., 2022, vol. 77, p. 334.

    Article  CAS  Google Scholar 

  26. Cote, A.P., Benin, A.I., Ockwig, N.W., O’Keeffe, M., Matzger, A.J., and Yaghi, O.M., Science, 2005, vol. 310, p. 1166.

    Article  CAS  PubMed  Google Scholar 

  27. Feng, X., Ding, X., and Jiang, D., Chem. Soc. Rev., 2012, vol. 41, p. 6010.

    Article  CAS  PubMed  Google Scholar 

  28. Waller, P., Gándara, F., and Yaghi, O., Acc. Chem. Res., 2015, vol. 48, p. 3053.

    Article  CAS  PubMed  Google Scholar 

  29. Segura, J.L., Mancheño, M.J., and Zamora, F., Chem. Soc. Rev., 2016, vol. 45, p. 5635.

    Article  CAS  PubMed  Google Scholar 

  30. Kandambeth, S., Mallick, A., Lukose, B., Mane, M.V., Heine, T., and Banerjee, R., J. Am. Chem. Soc., 2012, vol. 134, p. 19524.

    Article  CAS  PubMed  Google Scholar 

  31. Chandra, S., Kandambeth, S., Biswal, B.P., Lukose, B., Kunjir, S.M., Chaudhary, M., Babarao, R., Heine, T., and Banerjee, R., J. Am. Chem. Soc., 2013, vol. 135, p. 17853.

    Article  CAS  PubMed  Google Scholar 

  32. You, L., Xu, K., Ding, G., Shi, X., Li, J., Wang, S., and Wang, J., J. Mol. Liq., 2020, vol. 320, p. 114456.

    Article  CAS  Google Scholar 

  33. Dai Li, Z., Zhang, H.Q., Xiong, X.H., and Luo, F., J. Solid State Chem., 2019, vol. 277, p. 484.

    Article  CAS  Google Scholar 

  34. Schwab, M.G., Fassbender, B., Spiess, H.W., Thomas, A., Feng, X., and Mullen, K., J. Am. Chem. Soc., 2009, vol. 131, p. 7216.

    Article  CAS  PubMed  Google Scholar 

  35. Ye, N., Wang, X., Liu, Q., and Hu, X., Anal. Chim. Acta., 2018, vol. 1028, p. 113.

    Article  CAS  PubMed  Google Scholar 

  36. Yuan, S., Li, X., Zhu, J., Zhang, G., Van Puyvelde, P., and van der Bruggen, B., Chem. Soc. Rev., 2019, vol. 48, p. 2665.

    Article  CAS  PubMed  Google Scholar 

  37. Farahani, R., Madrakian, T., Rezvani Jalal, N., and Afkhami, A., Russ. J. Phys. Chem. A, 2023, vol. 97, p. 928.

    Article  CAS  Google Scholar 

  38. Dong, Y., Yi, C., Yang, S., Wang, J., Chen, P., Liu, X., Du, W., Wang, S., and Liu, B-F., Nanoscale, 2019, vol. 11, p. 4562.

    Article  CAS  PubMed  Google Scholar 

  39. Bao, J., Zhu, Y., Yuan, S., Wang, F., Tang, H., Bao, Z., Zhou, H., and Chen, Y., Nanoscale Res. Lett., 2018, vol. 13, p. 396.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Foroughi, M., Azqhandi, M.H.A., and Kakhki, S., J. Hazard. Mater., 2020, vol. 388, p. 121769.

    Article  CAS  PubMed  Google Scholar 

  41. Yang, Y., Hu, X., Zhao, Y., Cui, L., Huang, Z., Long, J., Xu, J., Deng, J., Wu, C., and Liao, W., J. Colloid Interface Sci., 2017, vol. 495, p. 68.

    Article  CAS  PubMed  Google Scholar 

  42. Nahyoon, N.A., Liu, L., Rabé, K., Yuan, L., Nahyoon, S.A., and Yang, F., Int. J. Hydrogen Energy, 2019, vol. 44, p. 21703.

    Article  CAS  Google Scholar 

  43. Wang, Y., Zhang, H., Zhang, J., Lu, C., Huang, Q., Wu, J., and Liu, F., J. Hazard. Mater., 2011, vol. 192, p. 35.

    CAS  PubMed  Google Scholar 

  44. Wang, Y., Zhang, H., Chen, L., Wang, S., and Zhang, D., Sep. Purif. Technol., 2012, vol. 84, p. 138.

    Article  CAS  Google Scholar 

  45. Yu, B., Bai, Y., Ming, Z., Yang, H., Chen, L., Hu, X., Feng, S., and Yang, S-T., Mater. Chem. Phys., 2017, vol. 198, p. 283.

    Article  CAS  Google Scholar 

  46. Sahoo, S.K., Padhiari, S., Biswal, S., Panda, B., and Hota, G., Mater. Chem. Phys., 2020, vol. 244, p. 122710.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Bu-Ali Sina University for their support.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raheleh Farahani.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farahani, R., Madrakian, T., Sarvestani, M.J. et al. Rapid and Highly Efficient Removal of Tetracycline by a Melamine-Based Covalent Organic Framework: Comprehensive Density Functional Theory and Experimental Studies. J Anal Chem 79, 379–388 (2024). https://doi.org/10.1134/S1061934824040051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934824040051

Keywords:

Navigation