Skip to main content
Log in

An Easy and Promising Tool for the Determination of Iodine and Epoxy Values of Epoxidized Soybean Oil by 1H NMR Spectrometry

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

High-resolution 1H nuclear magnetic resonance (1H NMR) was advanced to determine both epoxy value and iodine value (IV) of vegetable oils that occur during their epoxidation. For calibration, rather than using a series of diluted stock samples, epoxidized soybean oils with a range of IV and epoxy value synthesized using entrapped peroxophosphotungstate as the catalyst under different reaction conditions were used. During the epoxidation reaction, IV and epoxy value were tracked with respect to time using 1H NMR and conventional volumetric methods. The integrated peak area of the olefinic hydrogens (5.3–5.5 ppm) was used to calculate the absolute number of double-bonded protons. By comparison of IV obtained by 1H NMR and the traditional Wijs-cyclohexane methods, the correlation coefficient was R2 = 0.9997 for the regression equation y = 1.1314x + 1.0035, where x was the result given by 1H NMR. The average integrated peak areas related to the hydrogens of the epoxide groups located at chemical shifts of 2.9 ppm (monoepoxide) and 3.1 ppm (diepoxide) were used to determine the epoxy value. The quantification of the number of epoxides was carried out by 1H NMR and the values obtained were correlated with epoxide content determined by the hydrochloric acid/acetone method. As a consequence, the correlation coefficient was R2 = 0.9991 for the regression equation y = 0.0052x + 1.7258, where x was the average integrated peak areas related to the hydrogens of the epoxide groups by 1H NMR. The novelty of our study lies in the simultaneous correlation between IV and epoxy value obtained from conventional titrations, the integrated peak area related to olefinic protons, and the average integrated peak area located at the hydrogen of epoxide group, calculated using 1H NMR. This approach is used to monitor and optimize the epoxidation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Javni, I., Petrović, Z.S., Guo, A., and Fuller, R., J. Appl. Polym. Sci., 2000, vol. 77, p. 1723.

    Article  CAS  Google Scholar 

  2. Sawpan, M.A., J. Polym. Res., 2018, vol. 25, p. 184.

    Article  Google Scholar 

  3. Guo, A., Zhang, W., and Petrovic, Z.S., J. Mater. Sci. 2006, vol. 41, p. 4914.

    Article  ADS  CAS  Google Scholar 

  4. Hosney, H., Nadiem, B., Ashour, I., Mustafa, I., and El-Shibiny, A., J. Appl. Polym. Sci., 2018, vol. 135, p. 46270.

    Article  Google Scholar 

  5. Karmalm, P., Hjertberg, T., Jansson, A., and Dahl, R., Polym. Degrad. Stab., 2009, vol. 94, p. 2275.

    Article  CAS  Google Scholar 

  6. Nihul, P.G., Mhaske, S.T., and Shertukde, V.V., Iran. Polym. J., 2014, vol. 23, p. 599.

    Article  CAS  Google Scholar 

  7. He, W., Zhu, G., Gao, Y., Wu, H., Fang, Z., and Guo, K., Chem. Eng. J., 2020, vol. 380, p. 122532.

    Article  Google Scholar 

  8. Cai, D.-L., Yue, X., Hao, B., and Ma, P.-C., J. Cleaner Prod., 2020, vol. 274, p. 122781.

    Article  CAS  Google Scholar 

  9. Wagner, H., Luther, R., and Mang, T., Appl. Catal., A, 2001, vol. 221, p. 429.

  10. Lathi, P. and Mattiasson, B., Appl. Catal., B, 2007, vol. 69, p. 207.

    Article  CAS  Google Scholar 

  11. Aguilera, A.F., Tolvanen, P., Wärnå, J., Leveneur, S., and Salmi, T., Chem. Eng. J., 2019, vol. 375, p. 121936.

    Article  CAS  Google Scholar 

  12. Turco, R., Vitiello, R., Russo, V., Tesser, R., Santacesaria, E., and Di Serio, M., Green Process. Synth., 2013, vol. 2, p. 427.

    CAS  Google Scholar 

  13. Turco, R., Tesser, R., Russo, V., Cogliano, T., Di Serio, M., and Santacesaria, E., Ind. Eng. Chem. Res., 2021, vol. 60, p. 16607.

    Article  CAS  Google Scholar 

  14. Santacesaria, E., Tesser, R., Di Serio, M., Turco, R., Russo, V., and Verde, D., Chem. Eng. J., 2011, vol. 173, p. 198.

    Article  CAS  Google Scholar 

  15. Santacesaria, E., Turco, R., Russo, V., Di Serio, M., and Tesser, R., Ind. Eng. Chem. Res., 2020, vol. 59, p. 21700.

    Article  CAS  Google Scholar 

  16. Törnvall, U., Orellana-Coca, C., Hatti-Kaul, R., and Adlercreutz, D., Enzyme. Microb., 2007, vol. 40, p. 447.

    Article  Google Scholar 

  17. Sun, S., Yang, G., Bi, Y., and Liang, H., J. Am. Oil. Chem. Soc., 2011, vol. 88, p. 1567.

    Article  CAS  Google Scholar 

  18. Kirpluks, M., Vanags, E., Abolins, A., Fridrihsone, A., and Cabulis, U., J. Cleaner Prod., 2019, vol. 215, p. 390.

    Article  CAS  Google Scholar 

  19. Bhalerao, M.S., Kulkarni, V.M., and Patwardhan, A.V., Ultrason. Sonochem., 2018, vol. 40, p. 912.

    Article  CAS  PubMed  Google Scholar 

  20. Praserthdam, S., Rittiruam, M., Maungthong, K., Saelee, T., Somdee, S., and Praserthdam, P., Sci. Rep., 2020, vol. 10, p. 18952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Perez-Sena, W., Wärnå, J., Eränen, K., Tolvanen, P., Estel, L., Leveneur, S., and Salmi, T., Chem. Eng. Sci., 2021, vol. 230, p. 116206.

    Article  CAS  PubMed  Google Scholar 

  22. Wei, X., Cheng, Q., Sun, T., Tong, S., and Meng, L., Appl. Organomet. Chem., 2021, vol. 35, p. e6063.

    Article  CAS  Google Scholar 

  23. Martínez R, D.C., Trujillo, C.A., Carriazo, J.G., and Castellanos, N.J., Catal. Lett., 2022, vol. 153, p. 1756.

    Google Scholar 

  24. Kalkandelen, M. and Yılmaz, S., Ind. Crops Prod., 2022, vol. 188, p. 115656.

    Article  CAS  Google Scholar 

  25. Farias, M., Martinelli, M., and Bottega, D.P., Appl. Catal., A, 2010, vol. 384, p. 213.

  26. Wai, P.T., Jiang, P., Shen, Y., Zhang, P., and Gu, Q., Appl. Catal., A, 2020, vol. 596, p. 117537.

  27. Zhang, H., Yang, H., Guo, H., Yang, J., Xiong, L., Huang, C., Chen, X., Ma, L., and Chen, Y., Appl. Clay Sci., 2014, vol. 90, p. 175.

    Article  CAS  Google Scholar 

  28. Poli, E., Clacens, J.-M., and Pouilloux, Y., Catal. Today, 2011, vol. 164, p. 429.

    Article  CAS  Google Scholar 

  29. Janković, M., Govedarica, O.M., and Sinadinović-Fišer, S., Ind. Crops. Prod., 2020, vol. 143, p. 111881.

    Article  Google Scholar 

  30. Kurańska, M. and Niemiec, M., Catalysts, 2020, vol. 10, p. 1261.

    Article  Google Scholar 

  31. Cogliano, T., Turco, R., Russo, V., Di Serio, M., and Tesser, R., Ind. Crops. Prod., 2022, vol. 186, p. 115258.

    Article  CAS  Google Scholar 

  32. Evtushenko, Y.M., Ivanov, V.M., and Zaitsev, B.E., J. Anal. Chem., 2003, vol. 58, p. 347.

    Article  CAS  Google Scholar 

  33. Núñez, C., Lisperguer, J., and Droguett, C., J. Chil. Chem. Soc., 2016, vol. 61, p. 2763.

    Article  Google Scholar 

  34. Xia, W., Budge, S.M., and Lumsden, M.D., J. Am. Oil. Chem. Soc., 2016, vol. 93, p. 467.

    Article  CAS  Google Scholar 

  35. Tavassoli-Kafrani, M.H., van de Voort, F.R., and Curtis, J.M., Eur. J. Lipid Sci. Technol., 2017, vol. 119, p. 1600354.

    Article  Google Scholar 

  36. Parreira, T., Ferreira, M., Sales, H., and de Almeida, W., Appl. Spectrosc., 2002, vol. 56, p. 1607.

    Article  ADS  CAS  Google Scholar 

  37. Alarcon, R.T., Gaglieri, C., Lamb, K.J., North, M., and Bannach, G., Ind. Crops. Prod., 2020, vol. 154, p. 112585.

    Article  CAS  Google Scholar 

  38. Nieto, J.F., Santiago, E.V., and Hernández López, S., Adv. Anal. Chem., 2021, vol. 11, no. 1, p. 1.

    Article  CAS  Google Scholar 

  39. Determination of the Epoxy Value of Plasticizers, Chinese National GB Standardization: GB/T 1677-2008.

  40. Determination of the Iodine Value of Plasticizers, Chinese National GB Standardization: GB/T5532-2008.

  41. Miyake, Y., Yokomizo, K., and Matsuzaki, N., J. Am. Oil Chem. Soc., 1998, vol. 75, p. 15.

    Article  CAS  Google Scholar 

  42. Miller, J.C. and Miller, J.N., Stastistics for Analytical Chemistry, New York: Ellis Horwood, 1992, 2nd ed.

    Google Scholar 

  43. Skoog, D.A., West, D.M., and Holler, J.F., Fundamental of Analytical Chemistry, Cengage Learning, 1996, 7th ed.

    Google Scholar 

Download references

Funding

We gratefully acknowledge financial support to this work by international exchange and cooperation projects (BX 2019018), and the International Joint Research Laboratory for Biomass Conversion Technology at Jiangnan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingping Jiang.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wai, P., Jiang, P., Lu, M. et al. An Easy and Promising Tool for the Determination of Iodine and Epoxy Values of Epoxidized Soybean Oil by 1H NMR Spectrometry. J Anal Chem 79, 233–240 (2024). https://doi.org/10.1134/S106193482402014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106193482402014X

Keywords:

Navigation