Skip to main content
Log in

Study of the Fragmentation of the Antiviral Drug Triazavirin in a Collision Cell under Electrospray Ionization Conditions

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Azoloazines possess a wide spectrum of biological activity. For the analysis of new drugs of the azoloazine series, reliable methods of identification and quantitative analysis are necessary. Mass spectrometry is one of the main methods for the analysis of drugs and their metabolites in a biological matrix. Information about the main fragmentation pathways of these substances favors their reliable identification. In this study, fragmentation pathways of the protonated molecule of triazavirin, which is an antiviral agent from the azoloazine series, are studied. The experiments are carried out using high resolution tandem mass spectrometry with an electrospray ionization source. The directions of fragmentation of the compound in the collision cell are confirmed by pseudo-MS3 experiments, which are possible due to dissociation in the ion source, and by comparative data analysis of triazavirin analogs labeled with stable isotopes. It is found that, during dissociation in the ion source, two types of ions associated with the loss of the nitro group are formed, in contrast to fragmentation in the collision cell. The formation of basic product ions occurs due to the loss of substituents in the heterocyclic structure with the release of neutral molecules or radicals, and also as a result of reactions affecting the integrity of the triazolotriazine heterocyclic system. The information presented in this work may be also useful in the study of structurally similar compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Karpenko, I., Deev, S., Kiselev, O., et al., Antimicrob. Agents Chemother., 2010, vol. 54, no. 5, p. 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kiselev, O.I., Deeva, E.G., Melnikova, T.I., et al., Vopr. Virusol., 2012, vol. 57, no. 6, p. 9.

    CAS  PubMed  Google Scholar 

  3. Deeva, E.G., Rusinov, V.L., Charushin, V.N., et al., Razrab. Regist. Lek. Sredstv, 2014, vol. 2, no. 7, p. 144.

    Google Scholar 

  4. Sokolova, E.V., Hohlacheva, E.A., Shamshina, D.D., et al., Vestn. Volgogr. Gos. Med. Univ., 2019, no. 1(69), p. 79.

  5. Rusinov, V.L., Charushin, V.N., and Chupakhin, O.N., Russ. Chem. Bull., 2018, vol. 67, no. 4, p. 573.

    Article  CAS  Google Scholar 

  6. Spasov, A.A., Babkov, D.A., Sysoeva, V.A., et al., Arch. Pharm. Chem. Life Sci., 2017, vol. 350, no. 12, p. 1700226.

    Article  Google Scholar 

  7. My, T.T.A., Hieu, L.T., Hai, N.T.T., et al., Vietnam J. Chem., 2020, vol. 58, no. 5, p. 666.

    CAS  Google Scholar 

  8. Kasyanenko, K.V., Kozlov, K.V., Maltsev, O.V., et al., Ter. Arkh., 2021, vol. 93, no. 3, p. 290.

    CAS  PubMed  Google Scholar 

  9. Wu, X., Yu, K., Wang, Y., et al., Engineering, 2020, vol. 6, no. 10, p. 1185.

    Article  CAS  PubMed  Google Scholar 

  10. Niessen, W.M.A., Int. J. Mass Spectrom. Ion Processes, 2020, vol. 455, p. 116.

    Google Scholar 

  11. Kasper, P.T., Rojas-Cherto, M., Mistrik, R., et al., Rapid Commun. Mass Spectrom., 2012, vol. 26, no. 19, p. 2275.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bure, C. and Lange, C., Curr. Org. Chem., 2003, vol. 7, no. 15, p. 1613.

    Article  CAS  Google Scholar 

  13. Davidson, J.T., Sasiene, Z.J., and Jackson, G.P., J. Mass Spectrom., 2021, vol. 56, no. 2, p. e4679.

    Article  CAS  PubMed  Google Scholar 

  14. Abdelhameed, A.S., Kadi, A.A., Attia, M.I., et al., J. Clim., 2014, p. 1.

  15. Raska, C.S., Parker, C.E., Huang, C., et al., J. Am. Soc. Mass Spectrom., 2002, vol. 13, no. 9, p. 1034.

    Article  CAS  PubMed  Google Scholar 

  16. Shestakova, T.S., Eltsov, O.S., Yakovleva, Y.A., et al., Chem. Heterocycl. Compd., 2019, vol. 55, no. 9, p. 856.

    Article  CAS  Google Scholar 

  17. Chupakhin, O.N., Rusinov, V.L., Ulomsky, E.N., et al., RF Patent 2294936, 2007.

  18. Shestakova, T.S., Khalymbadzha, I.A., Deev, S.L., et al., Russ. Chem. Bull., 2011, vol. 60, no. 4, p. 729.

    Article  CAS  Google Scholar 

  19. Shestakova, T.S., Deev, S.L., Khalymbadzha, I.A., et al., Chem. Heterocycl. Compd., 2021, vol. 57, no. 4, p. 479.

    Article  CAS  Google Scholar 

  20. Niessen, W.M.A., Int. J. Mass Spectrom. Ion Processes, 2021, vol. 460, p. 116496.

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation within the Development Program of the Ural Federal University named after the first President of Russia B.N. El’tsin in accordance with the program of strategic academic leadership “Prioritet-2030”.

Author information

Authors and Affiliations

Authors

Contributions

The contributions of all authors to the work are equivalent.

Corresponding author

Correspondence to V. A. Shevyrin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Kudrinskaya

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimova, T.V., Shevyrin, V.A., Ivanova, A.V. et al. Study of the Fragmentation of the Antiviral Drug Triazavirin in a Collision Cell under Electrospray Ionization Conditions. J Anal Chem 78, 1921–1928 (2023). https://doi.org/10.1134/S1061934823140034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934823140034

Keywords:

Navigation