Skip to main content
Log in

QuEChERS Extraction of PAHs from Various Soils and Sediments Followed by Chromatographic Determination

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

We studied the features of PAHs extraction by QuEChERS in the sample preparation of soils and bottom sediments of various compositions followed their determination by gas chromatography–mass-spectrometry. The test samples were soils of sandy, loamy sand, loamy, and clayey types and bottom sediments of loamy sand type. The mineralogical composition and organic matter content of the samples were used to predict how PAHs were retained by the soils and sediments. The impact of ultrasonic treatment on analyte extraction with subsequent identification by chromatography was assessed. No ultrasonic treatment was required to extract and determine all PAHs (up to 100%) in sandy and loamy sand soils and low-molecular-weight PAHs in all test samples. The QuEChERS extraction and determination of high-molecular-weight PAHs in clay type soil samples and loamy sand bottom sediments required a 10-min ultrasonic treatment, while the recoveries of analytes were higher than 87 and 90%, respectively. The analysis of a loamy soil sample with a high organic matter content was the most challenging. To extract over 70% of high-molecular-weight PAHs from a sample of this type using the QuEChERS technique, the binary acetonitrile–acetone (1 : 1) extractant rather than conventional acetonitrile was used with the simultaneous 15-min ultrasonic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 1.
Fig. 2.
Fig. 2.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Johnsen, A.R., Wick, L.Y., and Harms, H., Environ. Pollut., 2005, vol. 133, no. 1, p. 71. https://doi.org/10.1016/j.envpol.2004.04.015

    Article  CAS  PubMed  Google Scholar 

  2. Semenov, V.M. and Kogut, B.M., Pochvennoe organicheskoe veshchestvo (Soil Organic Matter), Moscow: GEOS, 2015.

  3. Chefetz, B. and Xing, B., Environ. Sci. Technol., 2009, vol. 43, no. 6, p. 1680. https://doi.org/10.1021/es803149u

    Article  CAS  PubMed  Google Scholar 

  4. Chen, W., Wang, H., Gao, Q., Chen, Y., Li, S., Yang, Y., Werner, D., Tao, Sh., and Wang, X., Environ. Pollut., 2017, vol. 230, p. 882. https://doi.org/10.1016/j.envpol.2017.07.038

    Article  CAS  PubMed  Google Scholar 

  5. Lu, Z., Zeng, F., Xue, N., and Li, F., Sci. Total Environ., 2012, vol. 433, p. 50. https://doi.org/10.1016/j.scitotenv.2012.06.036

    Article  CAS  PubMed  Google Scholar 

  6. Saeedi, M., Li, L.Y., and Grace, J.R., Environ. Earth Sci., 2018, vol. 77, p. 305. https://doi.org/10.1007/s12665-018-7489-0

    Article  CAS  Google Scholar 

  7. Zhu, D., Herbert, B.E., Schlautman, M.A., Carraway, E.R., and Hur, J., J. Environ. Qual., 2004, vol. 33, p. 1322. https://doi.org/10.2134/jeq2004.1322

    Article  CAS  PubMed  Google Scholar 

  8. Muller, S., Totsche, K.U., and Kogel-Knabner, I., Eur. J. Soil Sci., 2007, vol. 58, no. 4, p. 918. https://doi.org/10.1111/j.1365-2389.2007.00930.x

    Article  CAS  Google Scholar 

  9. Wang, L., Niu, J., Yang, Z., Shen, Z., and Wang, J., J. Hazard. Mater., 2008, vol. 154, p. 811. https://doi.org/10.1016/j.jhazmat.2007.10.096

    Article  CAS  PubMed  Google Scholar 

  10. Lau, E.V., Gan, S., and Ng, H.K., Int. J. Anal. Chem., 2010, vol. 2010, p. 398381. https://doi.org/10.1155/2010/398381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hawthorne, S.B., Grabanski, C.B., Martin, E., and Miller, D.J., J. Chromatogr. A, 2000, vol. 892, p. 421. https://doi.org/10.1016/s0021-9673(00)00091-1

    Article  CAS  PubMed  Google Scholar 

  12. Ling, W., Rui, S., Yongxin, L., and Sun, C., Trends Environ. Anal. Chem., 2019, vol. 24, p. e00074. https://doi.org/10.1016/j.teac.2019.e00074

    Article  CAS  Google Scholar 

  13. Temerdashev, Z.A., Musorina, T.N., Chervonnaya, T.A., and Arutyunyan, Zh.V., J. Anal. Chem., 2021, vol. 76, no. 12, p. 1357. https://doi.org/10.1134/s1061934821120133

    Article  CAS  Google Scholar 

  14. Fedotov, P.S., Malofeeva, G.I., Savonina, E.Y., and Spivakov, B.Y., J. Anal. Chem., 2019, vol. 74, no. 3, p. 205. https://doi.org/10.1134/S1061934819030043

    Article  CAS  Google Scholar 

  15. Portet-Koltalo, F., Tian, Y., Berger-Brito, I., Benamar, A., Boulangé-Lecomte, C., and Machour, N., Talanta, 2021, vol. 221, p. 121601. https://doi.org/10.1016/j.talanta.2020.121601

    Article  CAS  PubMed  Google Scholar 

  16. Santana-Mayor, A., Socas-Rodriguez, B., Herrera-Herrera, A.V., and Rodriguez-Delgado, M.A., TrAC, Trends Anal. Chem., 2019, vol. 116, p. 214. https://doi.org/10.1016/j.trac.2019.04.018

    Article  CAS  Google Scholar 

  17. Perestrelo, R., Silva, P., Porto-Figueira, P., Pereira, J.A.M., Silva, C., Medina, S., and Camara, J.S., Anal. Chim. Acta, 2019, vol. 1070, p. 1. https://doi.org/10.1016/j.aca.2019.02.036

    Article  CAS  PubMed  Google Scholar 

  18. Temerdashev, Z.A., Musorina, T.N., Ovsepyan, S.K., and Korpakova, I.G., J. Anal. Chem., 2022, vol. 77, no. 5, p. 595. https://doi.org/10.1134/s1061934822050136

    Article  CAS  Google Scholar 

  19. Huang, Y., Wei, J., Song, J., Chen, M., and Luo, Y., Chemosphere, 2013, vol. 92, p. 1010. https://doi.org/10.1016/j.chemosphere.2013.03.035

    Article  CAS  PubMed  Google Scholar 

  20. Manousi, N. and Zachariadis, G.A., Molecules, 2020, vol. 25, no. 2182. https://doi.org/10.3390/molecules25092182

  21. Gimeno, R.A., Altelaar, A.F.M., Marcé, R.M., and Borrull, F., J. Chromatogr. A, 2002, vol. 958, p. 141. https://doi.org/10.1016/s0021-9673(02)00386-2

    Article  CAS  PubMed  Google Scholar 

  22. Yamada, T.M., Souza, D.A., Morais, C.R., and Mozeto, A.A., J. Chromatogr. Sci., 2009, vol. 47, no. 9, p. 794. https://doi.org/10.1093/chromsci/47.9.794

    Article  CAS  PubMed  Google Scholar 

  23. Temerdashev, Z.A., Musorina, T.N., and Chervonnaya, T.A., J. Anal. Chem., 2020, vol. 75, no. 8, p. 1000. https://doi.org/10.1134/s1061934820080158

    Article  CAS  Google Scholar 

  24. GOST (State Standard) 26213-2021: Soils. Methods for Determination of Organic Matter, Moscow: Standartinform, 2021.

  25. GOST (State Standard) 12536-2014: Soils. Methods of Laboratory Granulometric (Grain-Size) and Microaggregate Distribution, Moscow: Standartinform, 2019.

  26. GOST (State Standard) 5180-2015: Soils. Laboratory Methods for Determination of Physical Characteristics, Moscow: Standartinform, 2016.

  27. GOST (State Standard) 33850-2016: Soils. Determination of Chemical Composition by X-Ray Fluorescence Spectrometry, Moscow: Standartinform, 2019.

  28. GOST (State Standard) 21216-2014: Clay Raw Materials. Test Methods, Moscow: Standartinform, 2015.

  29. Belitsina, G.D., Vasil’evskaya, V.D., and Grishina, L.A., Pochvovedenie (Soil Science), Part 1: Pochva i pochvoobrazovanie (Soil and Soil Formation), Moscow: Vysshaya Shkola, 1988.

    Google Scholar 

  30. USS Working Group WRB: World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports, Rome: FAO, 2015.

    Google Scholar 

  31. Hwang, S., Ramirez, N., Cutright, T.J., and Ju, L.-K., Water, Air, Soil Pollut., 2003, vol. 143, p. 65. https://doi.org/10.1023/A:1022863015709

    Article  CAS  Google Scholar 

  32. Földvári, M., Handbook of Thermogravimetric System of Minerals and Its Use in Geological Practice, Budapest: Geol. Inst. Hungary, 2011.

    Google Scholar 

  33. Neilson, A.H., The Handbook of Environmental Chemistry, vol. 3, part i: PAHs and Related Compounds, Heidelberg: Springer, 1998.

  34. Mackay, D., Shiu, W.Y., Ma, K.C., and Lee, S.C., Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, Boca Raton: CRC, 2006.

    Book  Google Scholar 

  35. Kim, K.-H., Jahan, S.A., Kabir, E., and Brown, R.J.C., Environ. Int., 2013, vol. 60, p. 71.

    Article  CAS  PubMed  Google Scholar 

  36. Baek, S.O., Field, R.A., Goldstone, M.E., Kirk, P.W., Lester, J.N., and Perry, R., Water, Air, Soil Pollut., 1991, vol. 60, p. 279. https://doi.org/10.1007/BF00282628

    Article  CAS  Google Scholar 

  37. Purcaro, G., Moret, S., and Conte, L.S., in Encyclopedia of Food and Health, Caballero, B., Finglas, P., and Toldra, F., Eds., Amsterdam: Elsevier, 2016, p. 406. https://doi.org/10.1016/b978-0-12-384947-2.00550-x

    Book  Google Scholar 

  38. Voutsas, E., in Thermodynamics, Solubility and Environmental Issues, Amsterdam: Elsevier, 2007, p. 205. https://doi.org/10.1016/b978-044452707-3/50013-6

    Book  Google Scholar 

  39. Delle Site, A., J. Phys. Chem. Ref. Data, 2001, vol. 30, no. 1, p. 187. https://doi.org/10.1063/1.1347984

    Article  CAS  Google Scholar 

  40. Nanuam, J., Zuddas, P., Sawangwong, P., and Pachana, K., Procedia Earth Planet. Sci., 2013, vol. 7, p. 607. https://doi.org/10.1016/j.proeps.2013.03.004

    Article  CAS  Google Scholar 

  41. Zemanek, J., SPE Form. Eval., 1989, vol. 4, p. 515. https://doi.org/10.2118/15713-pa

    Article  CAS  Google Scholar 

  42. Pikovskii, Yu.I., Korotkov, L.A., Smirnova, M.A., and Kovach, R.G., Euras. Soil. Sci., 2017, vol. 50, p. 1125. https://doi.org/10.1134/S1064229317100076

    Article  CAS  Google Scholar 

  43. Lau, E.V., Gan, S., and Ng, H.K., Int. J. Anal. Chem., 2010, vol. 2010, no. 398381. https://doi.org/10.1155/2010/398381

  44. Chekmarev, A.S., Skvortsov, A.V., Suleimanova, A.Z., Khatsrinov, A.I., Baiguzin, F.A., and Petukhova, E.A., Ul’trazvuk. Obrab. Glinistogo Syr’ya, Vestn. Kazan. Tekhnol. Univ., 2010, no. 8, p. 277.

Download references

ACKNOWLEDGMENTS

The experiments were performed with the use of scientific equipment of the “Ecological and Analytical Center” for collective use of the Kuban State University.

Funding

The work was supported by the State Contract of the RF Ministry of Science and Higher Education, project no. FZEN-2023-0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. A. Temerdashev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temerdashev, Z.A., Ovsepyan, S.K., Musorina, T.N. et al. QuEChERS Extraction of PAHs from Various Soils and Sediments Followed by Chromatographic Determination. J Anal Chem 78, 1159–1173 (2023). https://doi.org/10.1134/S1061934823090174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934823090174

Keywords:

Navigation