Skip to main content
Log in

Isolation of Nanoparticles from Soil and Dust and Their Study by Single Particle Inductively Coupled Plasma Mass Spectrometry

  • REVIEWS
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The study of natural and anthropogenic dust and soil nanoparticles is an urgent task of analytical chemistry and biogeochemistry, the solution of which requires the use of complementary separation and analysis methods. In this work, the existing approaches to the isolation of nanoparticles from natural polydisperse samples are summarized. Methods of extracting nanoparticles with aqueous solutions, a possibility of intensifying the process of extracting nanoparticles by an ultrasonic field, methods of cloud-point extraction, and also methods for purifying the separated fractions of nanoparticles from impurities of microparticles are considered. The advantages and disadvantages of these methods are evaluated. It is noted that the success of a study of soil and dust nanoparticles depends on the competent choice of a set of methods for isolating nanoparticles from polydisperse samples and their purification from microparticle impurities, as well as methods for the characterization and elemental analysis of nanoparticles. Particular attention is paid to single particle inductively coupled plasma mass spectrometry as a promising method for determining the concentration, size distribution, and elemental composition of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Hochella, M.F., Mogk, D.W., Ranville, J., Allen, I.C., Luther, G.W., Marr, L.C., McGrail, B.P., Murayama, M., Qafoku, N.P., Rosso, K.M., Sahai, N., Schroeder, P.A., Vikesland, P., Westerhoff, P., and Yang, Y., Science, 2019, vol. 363, p. eaau8299.

  2. Keller, A.A., McFerran, S., Lazareva, A., and Suh, S., J. Nanopart. Res., 2013, vol. 15, p. 1692.

    Article  Google Scholar 

  3. Jeevanandam, J., Barhoum, A., Chan, Y.S., Dufresne, A., and Danquah, M.K., Beilstein J. Nanotechnol., 2018, vol. 9, p. 1050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Taylor, D.A., Environ. Health Perspect., 2002, vol. 110, p. A80.

    PubMed  PubMed Central  Google Scholar 

  5. Sahai, N., Kaddour, H., Dalai, P., Wang, Z., Bass, G., and Gao, M., Sci. Rep., 2017, vol. 7, p. 43418.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Xu, J., Campbell, J.M., Zhang, N., Hickey, W.J., and Sahai, N., Astrobiology, 2012, vol. 12, p. 785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lindenthal, A., Langmann, B., Patsch, J., Lorkowski, I., and Hort, M., Biogeosciences, 2013, vol. 10, p. 3715.

    Article  Google Scholar 

  8. Maters, E.C., Delmelle, P., and Bonneville, S., Environ. Sci. Technol., 2016, vol. 50, p. 5033.

    Article  CAS  PubMed  Google Scholar 

  9. Olgun, N., Duggen, S., Andronico, D., Kutterolf, S., Croot, P.L., Giammanco, S., Censi, P., and Randazzo, L., Mar. Chem., 2013, vol. 152, p. 32.

    Article  CAS  Google Scholar 

  10. Bains, S., Norris, R.D., Corfield, R.M., and Faul, K.L., Nature, 2000, vol. 407, p. 171.

    Article  CAS  PubMed  Google Scholar 

  11. Sigman, D.M. and Boyle, E.A., Nature, 2000, vol. 407, p. 859.

    Article  CAS  PubMed  Google Scholar 

  12. Cather, S.M., Dunbar, N.W., McDowell, F.W., McIntosh, W.C., and Scholle, P.A., Geosphere, 2009, vol. 5, p. 315.

    Article  Google Scholar 

  13. Houghton, J., Rep. Prog. Phys., 2005, vol. 68, p. 1343.

    Article  Google Scholar 

  14. Buzea, C., Pacheco, I.I., and Robbie, K., Biointerphases, 2007, vol. 2, p. MR17.

    Article  PubMed  Google Scholar 

  15. Ernst, W.G., J. Asian Earth Sci., 2012, vol. 59, p. 108.

    Article  Google Scholar 

  16. Trovato, M.C., Andronico, D., Sciacchitano, S., Ruggeri, R.M., Picerno, I., Di Pietro, A., and Visalli, G., Rev. Environ. Health, 2018, vol. 33, p. 295.

    Article  PubMed  Google Scholar 

  17. Geiser, M. and Kreyling, W.G., Part. Fibre Toxicol., 2010, vol. 7, p. 2.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Miller, M.R., Raftis, J.B., Langrish, J.P., McLean, S.G., Samutrtai, P., Connell, S.P., Wilson, S., Vesey, A.T., Fokkens, P.H.B., Boere, A.J.F., Krystek, P., Campbell, C.J., Hadoke, P.W.F., Donaldson, K., Cassee, F.R., Newby, D.E., Duffin, R., and Mills, N.L., ACS Nano, 2017, vol. 11, p. 4542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maher, B.A., Ahmed, I.A.M., and Karloukovski, V., MacLaren, D.A., Foulds, P.G., Allsop, D., Mann, D.M.A., Torres-Jardón, R., and Calderon-Garciduenas, L., Proc. Natl. Acad. Sci. U. S. A., 2016, vol. 113, p. 10797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Plathe, K.L., Kammer, F., Hassellov, M., Moore, J., Murayama, M., Hofmann, T., and Hochella, M.F., Environ. Chem., 2010, vol. 7, p. 82.

    Article  CAS  Google Scholar 

  21. Navratilova, J., Praetorius, A., Gondikas, A., Fabienke, W., Kammer, F., and Hofmann, T., Int. J. Environ. Res. Public Health, 2015, vol. 12, p. 15756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Praetorius, A., Gundlach-Graham, A., Goldberg, E., Fabienke, W., Navratilova, J., Gondikas, A., Kaegi, R., Günther, D., Hofmann, T., and Kammer, F., Environ. Sci. Nano, 2017, vol. 4, p. 307.

    Article  CAS  Google Scholar 

  23. Taskula, S., Stetten, L., Kammer, F., and Hofmann, T., Nanomaterials, 2022, vol. 12, p. 3307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mahdi, K.N.M., Peters, R.J.B., Klumpp, E., Bohme, S., van der Ploeg, M., Ritsema, C., and Geissen, V., Environ. Nanotechnol. Monit. Manage., 2017, vol. 7, p. 24.

    Google Scholar 

  25. Ermolin, M.S., Fedyunina, N.N., Karandashev, V.K., and Fedotov, P.S., J. Anal. Chem., 2019, vol. 74, p. 825.

    Article  CAS  Google Scholar 

  26. Ermolin, M.S., Ivaneev, A.I., Fedyunina, N.N., and Fedotov, P.S., Chemosphere, 2021, vol. 281, p. 130950.

    Article  CAS  PubMed  Google Scholar 

  27. Ermolin, M.S., Ivaneev, A.I., Brzhezinskiy, A.S., Fedyunina, N.N., Karandashev, V.K., and Fedotov, P.S., Molecules, 2022, vol. 27, p. 6107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yi, Z., Loosli, F., Wang, J., Berti, D., and Baalousha, M., Environ. Chem. Lett., 2020, vol. 18, p. 215.

    Article  CAS  Google Scholar 

  29. Kretzschmar, R. and Sticher, H., Environ. Sci. Technol., 1997, vol. 31, p. 3497.

    Article  CAS  Google Scholar 

  30. Regelink, I.C., Weng, L., Koopmans, G.F., and van Riemsdijk, W.H., Geoderma, 2013, vols. 202–203, p. 134.

    Article  Google Scholar 

  31. Baalousha, M., Wang, J., Erfani, M., and Goharian, E., Sci. Total Environ., 2021, vol. 792, p. 148426.

    Article  CAS  PubMed  Google Scholar 

  32. Schwertfeger, D.M., Velicogna, J.R., Jesmer, A.H., Saatcioglu, S., McShane, H., Scroggins, R.P., and Princz, Anal. Chem., 2017, vol. 89, p. 2505.

    Article  CAS  PubMed  Google Scholar 

  33. Loosli, F., Yi, Z., Wang, J., and Baalousha, M., Sci. Total Environ., 2019, vol. 677, p. 34.

    Article  CAS  PubMed  Google Scholar 

  34. Meili-Borovinskaya, O., Meier, F., Drexel, R., Baalousha, M., Flamigni, L., Hegetschweiler, A., and Kraus, T., J. Chromatogr. A, 2021, vol. 1641, p. 461981.

    Article  CAS  PubMed  Google Scholar 

  35. Liu, W., Shi, H., Liu, K., Liu, X., Sahle-Demessie, E., and Stephan, C., J. Agric. Food Chem., 2021, vol. 69, p. 1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, L., Wang, Q., Yang, Y., Luo, L., Ding, R., Yang, Z.G., and Li, H.P., Anal. Chem., 2019, vol. 91, p. 9442.

    Article  CAS  PubMed  Google Scholar 

  37. Gao, Y.P., Yang, Y., Li, L., Wei, W.J., Xu, H., Wang, Q., and Qiu, Y.Q., Anal. Chim. Acta, 2020, vol. 1110, p. 72.

    Article  CAS  PubMed  Google Scholar 

  38. Tou, F., Niu, Z., Fu, J., Wu, J., Liu, M., and Yang, Y., Environ. Sci. Technol., 2021, vol. 55, p. 10354.

    Article  CAS  PubMed  Google Scholar 

  39. Folens, K., van Acker, T., Bolea-Fernandez, E., Cornelis, G., Vanhaecke, F., Du, LaingG., and Rauch, S., Sci. Total Environ., 2018, vol. 615, p. 849.

    Article  CAS  PubMed  Google Scholar 

  40. Sánchez-Cachero, A., Fariñas, N.R., Jiménez-Moreno, M., and Martín-Doimeadios, R.C.R., Spectrochim. Acta, Part B, 2023, vol. 203, p. 106665.

    Article  Google Scholar 

  41. Hartmann, G. and Schuster, M., Anal. Chim. Acta, 2013, vol. 761, p. 27.

    Article  CAS  PubMed  Google Scholar 

  42. Hartmann, G., Baumgartner, T., and Schuster, M., Anal. Chem., 2014, vol. 86, p. 790.

    Article  CAS  PubMed  Google Scholar 

  43. Li, L., Hartmann, G., Doblinger, M., and Schuster, M., Environ. Sci. Technol., 2013, vol. 47, p. 7317.

    Article  CAS  PubMed  Google Scholar 

  44. Tsogas, G.Z., Giokas, D.L., and Vlessidis, A.G., Anal. Chem., 2014, vol. 86, p. 3484.

    Article  CAS  PubMed  Google Scholar 

  45. El Hadri, H. and Hackley, V.A., Environ. Sci. Nano, 2017, vol. 105.

  46. Torrent, L., Laborda, F., Margui, E., Hidalgo, M., and Iglesias, M., Anal. Bioanal. Chem., 2019, vol. 411, p. 5317.

    Article  CAS  PubMed  Google Scholar 

  47. Torrent, L., Iglesias, M., Hidalgo, M., and Margui, E., J. Anal. At. Spectrom., 2018, vol. 33, p. 383.

    Article  CAS  Google Scholar 

  48. Baur, S., Reemtsma, T., Stark, H.J., and Wagner, S., Chemosphere, 2020, vol. 246, p. 125765.

    Article  CAS  PubMed  Google Scholar 

  49. Ding, K., Liang, S., Xie, C., Wan, Q., Jin, C., Wang, S., Tang, Y.T., Zhang, M., and Qiu, R., Anal. Chem., 2022, vol. 94, p. 10745.

    Article  CAS  PubMed  Google Scholar 

  50. Ivaneev, A.I., Ermolin, M.S., and Fedotov, P.S., J. Anal. Chem., 2021, vol. 76, p. 413.

    Article  CAS  Google Scholar 

  51. Ivaneev, A.I., Ermolin, M.S., Fedotov, PS., Faucher, S., and Lespes, G., Sep. Purif. Rev., 2020, vol. 50, p. 363.

    Article  Google Scholar 

  52. Ermolin, M.S., Fedotov, P.S., Karandashev, V.K., and Shkinev, V.M., J. Anal. Chem., 2017, vol. 72, p. 533.

    Article  CAS  Google Scholar 

  53. Ermolin, M.S., Fedotov, P.S., Ivaneev, A.I., Karandashev, V.K., Fedyunina, N.N., and Eskina, V.V., J. Anal. Chem., 2017, vol. 72, p. 520.

    Article  CAS  Google Scholar 

  54. Ivaneev, A.I., Faucher, S., Ermolin, M.S., Karandashev, V.K., Fedotov, P.S., and Lespes, G., Anal. Bioanal. Chem., 2019, vol. 411, p. 8011.

    Article  CAS  PubMed  Google Scholar 

  55. Nomizu, T., Kaneco, S., Tanaka, T., Yamamoto, T., and Kawaguchi, H., Anal. Sci., 1993, vol. 9, p. 843.

    Article  CAS  Google Scholar 

  56. Degueldre, C. and Favarger, P.Y., Colloids Surf., A, 2003, vol. 217, p. 137.

    Article  CAS  Google Scholar 

  57. Degueldre, C. and Favarger, P.Y., Talanta, 2004, vol. 62, p. 1051.

    Article  CAS  PubMed  Google Scholar 

  58. Degueldre, C., Favarger, P.Y., and Wold, S., Anal. Chim. Acta, 2006, vol. 555, p. 263.

    Article  CAS  Google Scholar 

  59. Degueldre, C., Favarger, P.Y., and Bitea, C., Anal. Chim. Acta, 2004, vol. 518, p. 137.

    Article  CAS  Google Scholar 

  60. Degueldre, C., Favarger, P.Y., Rossé, R., and Wold, S., Talanta, 2006, vol. 68, p. 623.

    Article  CAS  PubMed  Google Scholar 

  61. Laborda, F., Bolea, E., and Jimenez-Lamana, J., Trends Environ. Anal. Chem., 2016, vol. 9, p. 15.

    CAS  Google Scholar 

  62. Laborda, F., Bolea, E., and Jiménez-Lamana, J., Anal. Chem., 2014, vol. 86, p. 2270.

    Article  CAS  PubMed  Google Scholar 

  63. Tian, X., Jiang, H., Hu, L., Wang, M., Cui, W., Shi, J., Liu, G., Yin, Y., Cai, Y., and Jiang, G., TrAC, Trends Anal. Chem., 2022, vol. 157, p. 116746.

    Article  CAS  Google Scholar 

  64. Chun, K.H., Lum, J.T.S., and Leung, K.S.Y., Anal. Chim. Acta, 2022, vol. 1192, p. 339389.

    Article  CAS  PubMed  Google Scholar 

  65. Tuoriniemi, J., Holbrook, T.R., Cornelis, G., Schmitt, M., Stark, H.J., and Wagner, S., J. Anal. At. Spectrom., 2020, vol. 35, p. 1678.

    Article  CAS  Google Scholar 

  66. Gundlach-Graham, A., Compr. Anal. Chem., 2021, vol. 93, p. 69.

    Article  Google Scholar 

  67. Goodman, A.J., Gundlach-Graham, A., Bevers, S.G., and Ranville, J.F., Environ. Sci. Nano, 2022, vol. 9, p. 2638.

    Article  CAS  Google Scholar 

  68. Yamashita, S., Ishida, M., Suzuki, T., Nakazato, M., and Hirata, T., Spectrochim. Acta, Part B, 2020, vol. 169, p. 105881.

    Article  CAS  Google Scholar 

  69. Yamashita, S., Yamamoto, K., Takahashi, H., and Hirata, T., J. Anal. At. Spectrom., 2022, vol. 37, p. 178.

    Article  CAS  Google Scholar 

Download references

Funding

The selection, generalization, and analysis of literature data on the isolation of urban dust nanoparticles were supported by the Russian Science Foundation, project no. 23-14-00084. The work corresponds to research topic of the Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences no. FMMZ-2019-0010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Ermolin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermolin, M.S., Fedotov, P.S. Isolation of Nanoparticles from Soil and Dust and Their Study by Single Particle Inductively Coupled Plasma Mass Spectrometry. J Anal Chem 78, 1115–1124 (2023). https://doi.org/10.1134/S1061934823090046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934823090046

Keywords:

Navigation