Skip to main content
Log in

Specific Features of the Determination of Xanthophyll Esters under Reversed-Phase HPLC Conditions

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Specific features of chromatographic determination of xanthophyll esters are studied using an example of marigold flower lutein diesters under reversed-phase HPLC conditions. The developed two-column method made it possible to establish that, in samples with a low solubility of carotenoids in the used solvent and on a chromatography column in using a mobile phase with a low solubility of carotenoids, the precipitation of diesters is possible, which detrimentally affects the accuracy of the chromatographic determination. A critical factor in this case isì temperature: the storage of samples (solutions) in a refrigerator is not always advisable, because freezing of the main components is possible. It was shown that the use of a mobile phase containing from 0 to 10 vol % acetonitrile in acetone at a temperature not lower than 20°C is acceptable for the separation of all-trans-lutein diesters from cis-derivatives of lutein and zeaxanthin derivatives on “monomeric” C18-phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Mariutti, L.R.B. and Mercadante, A.Z., Arch. Biochem. Biophys., 2018, vol. 648, p. 36.

    Article  CAS  PubMed  Google Scholar 

  2. Mercadante, A.Z., Rodrigues, D.B., Petry, F.C., and Mariutti, L.R.B., Food Res. Int., 2017, vol. 99, p. 830.

    Article  CAS  PubMed  Google Scholar 

  3. Sarkar, C.R., Bhagawati, B., Das, L., and Goswami, B.C., Ann. Biol. Res., 2012, vol. 3, p. 1461.

    CAS  Google Scholar 

  4. Abdala, A.F., Gallardo, A.P., Olvera, L.G., and Silva, E.M.E., Bioresour. Bioprocess., 2017, vol. 4, p. 5.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Raut, S. and Thaneshwari, T., Ecol. Environ. Conserv., 2022, vol. 28, special issue, p. S315.

    Google Scholar 

  6. Piccaglia, R., Marotti, M., and Grandi, S., Ind. Crops Prod., 1998, vol. 8, p. 45; Gregory, G.K., Chen, T.-S., and Philip, T., J. Food Sci., 1986, vol. 51, p. 1093; Rivas, J.D.L., J. Chromatogr. A, 1989, vol. 464, p. 442.

    Google Scholar 

  7. Tsao, R., Yang, R., Young, J.C., Zhu, H., and Manolis, T., J. Chromatogr. A, 2004, vol. 1045, p. 65.

    Article  CAS  PubMed  Google Scholar 

  8. Sowbhagya, H.B., Sampathu, S.R., and Krishnamurthy, N., Food Rev. Int., 2004, vol. 20, p. 33.

    Article  CAS  Google Scholar 

  9. Jiang, X.-Y., Chen, L.-S., and Zhou, C.-S., J. Cent. South Univ. Technol., 2005, vol. 12, p. 306.

    Article  CAS  Google Scholar 

  10. Hayashi, T., Oka, H., Ito, Y., Goto, T., Ozeki, N., Itakura, Y., Matsumoto, H., Ohno, H., Yoshida, K., Miyazawa, T., and Nagase, H., J. Liq. Chromatogr. Relat. Technol., 2005, vol. 27, p. 335.

    Article  Google Scholar 

  11. Vechpanich, J. and Shotipruk, A., Sep. Sci. Technol., 2010, vol. 46, p. 265.

    Article  Google Scholar 

  12. Lapshova, M.S., Deineka, V.I., Deineka, L.A., Blinova, I.P., and Tret’yakov, M.Yu., J. Anal. Chem., 2013, vol. 68, no. 11, p. 1014.

    Article  CAS  Google Scholar 

  13. Abdel-Aal, E.-S.M., Rabalski, I., and Blackwell, B.A., J. Agric. Food Chem., 2007, vol. 55, p. 4965.

    Article  PubMed  Google Scholar 

  14. Deineka, V.I., Lapshova, M.S., Zakharenko, E.V., and Deineka, L.A., Russ. J. Phys. Chem. A, 2013, vol. 87, no. 11, p. 1912.

    Article  CAS  Google Scholar 

  15. Epler, K.S., Sander, L.C., Ziegler, R.G., Wise, S.A., and Craft, N.E., J. Chromatogr. A, 1992, vol. 595, p. 89.

    Article  CAS  Google Scholar 

  16. Craft, N.E. and Soares, J.H., Jr., J. Agric. Food Chem., 1992, vol. 40, p. 431.

    Article  CAS  Google Scholar 

  17. Mrowicka, M., Mrowicki, J., Kucharska, E., and Majsterek, I., Nutrients, 2022, vol. 14, p. 827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Turtygin, A.V., Deineka, V.I., and Deineka, L.A., J. Anal. Chem., 2013, vol. 68, no. 6, p. 558.

    Article  CAS  Google Scholar 

  19. Deineka, V.I., Burzhinskaya, T.G., and Deineka, L.A., Anal. Kontrol’, 2019, no. 4, p. 501.

  20. Deineka, V.I., Sidorov, A.N., Deineka, L.A., and Tynyanaya, I.I., Sorbtsionnye Khromatogr. Protsessy, 2016, vol. 16, no. 3, p. 384.

    CAS  Google Scholar 

  21. Deineka, V.I., Deineka, L.A., Sidorov, A.N., Kostenko, M.O., and Blinova, I.PRuss. J. Phys. Chem. A, 2016, vol. 90, p. 861.

    Article  CAS  Google Scholar 

  22. Deineka, V.I., Deineka, L.A., Sidorov, A.N., Saenko, I.I., and Kostenko, O.M., Sorbtsionnye Khromatogr. Protsessy, 2016, vol. 16, no. 5, p. 624.

    CAS  Google Scholar 

  23. Weller, P. and Breithaupt, D.E., J. Agric. Food Chem., 2003, vol. 51, p. 7044.

    Article  CAS  PubMed  Google Scholar 

  24. Deineka, V.I. and Deineka, L.A., Sorbtsionnye Khromatogr. Protsessy, 2006, vol. 6, no. 3, p. 366.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Deineka.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deineka, V.I., Burzhinskaya, T.G., Blinova, I.P. et al. Specific Features of the Determination of Xanthophyll Esters under Reversed-Phase HPLC Conditions. J Anal Chem 78, 759–765 (2023). https://doi.org/10.1134/S1061934823060023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934823060023

Keywords:

Navigation