Skip to main content
Log in

Control of the Selectivity of the Separation of Dicaffeoylquinic Acids in Reversed-Phase Chromatography

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The chromatographic behavior (change in the logarithm of the retention factor with a change in the composition of the mobile phase) of dicaffeoylquinic (DCQ) acids is determined by the chromatographic behavior of monocaffeoylquinic acids. The most efficient combination is the conventional C18 stationary phase (Kromasil) and environmentally friendly mobile phases, in which acetonitrile is replaced by 2-propanol, with the mobile phase acidified with 0.25 vol % of phosphoric acid to stabilize the charge form of acids. The retention of dicaffeoylquinic acids can be explained by the simultaneous adsorption of caffeic acid substituents by two aromatic rings for both studied organic modifiers of the mobile phase. The replacement of the C18 phase by the phenylhexyl phase did not lead to significant changes in the selectivity of the separation of isomeric DCQ acids. At the same time, not all isomers were separated using mobile phases based on both organic modifiers: acetonitrile and 2-propanol. The developed conditions for the separation of DCQ in the gradient mode with “green” eluents A (10 vol % of isopropanol and 0.25 vol % of phosphoric acid in water) and B (20 vol % of isopropanol and 0.25 vol % of phosphoric acid in water) were used to determine the species composition of caffeoylquinic acids in coffee, mate, and artichoke tea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Clifford, M.N., Jaganath, I.B., Ludwig, I.A., and Crozier, A., Nat. Prod. Rep., 2017, vol. 34, p. 1391.

    Article  CAS  Google Scholar 

  2. Kim, H.G. and Oh, M.S., Arch. Pharm. Res., 2012, vol. 35, no. 3, p. 389.

    Article  CAS  Google Scholar 

  3. Farah, A. and de Paula Lima, J., Beverages, 2019, vol. 5, p. 11.

    Article  CAS  Google Scholar 

  4. Monteiro, M., Farah, A., Perrone, D., Trugo, L.C., and Donangelo, C., J. Nutr., 2007, vol. 137, p. 2196.

    Article  CAS  Google Scholar 

  5. Mateos, R., Baeza, G., Sarria, B., and Bravo, L., Food Chem., 2018, vol. 241, p. 232.

    Article  CAS  Google Scholar 

  6. Stalmach, A., Mullen, W., Nagai, C., and Crozier, F., Braz. J. Plant Physiol., 2006, vol. 18, p. 253.

    Article  CAS  Google Scholar 

  7. Meinhart, A.D., da Silveira, T.F.F., Silva, R.A., Damin, F.M., Bruns, R.E., and Godoy, H.T., Food Anal. Methods, 2017, vol. 10, p. 2943.

    Article  Google Scholar 

  8. Shan, Y., Jin, X., Cheng, Y., and Yan, W., Int. J. Food Prop., 2017, vol. 20, p. 2028.

    Article  CAS  Google Scholar 

  9. Schrader, K., Kiehne, A., Engelhardt, U.H., and Maier, H.G., J. Sci. Food Agric., 1996, vol. 71, p. 392.

    Article  CAS  Google Scholar 

  10. Ky, C.-L., Noirot, M., and Hamon, S., J. Agric. Food Chem., 1997, vol. 45, p. 786.

    Article  CAS  Google Scholar 

  11. Guerrero, G. and Suarez, M., J. Agric. Food Chem., 2001, vol. 49, p. 2454.

    Article  CAS  Google Scholar 

  12. Craig, A.P., Fields, C., Liang, N., Kitts, D., and Erickson, A., Talanta, 2016, vol. 154, p. 481.

    Article  CAS  Google Scholar 

  13. Murugesu, K., Saghir, S.A.M., Sadikun, A., Khaw, K.-Y., and Murugainyan, V., Acta Chromatogr., 2021, vol. 33, p. 170.

    Article  CAS  Google Scholar 

  14. Seruga, M. and Tomac, I., Int. J. Electrochem. Sci., 2014, vol. 9, p. 6134.

    Google Scholar 

  15. Lippert, J.A., Johnson, T.M., Lloyd, J.B., Smith, J.P., Johnson, B.T., Furlow, J., Proctor, A., and Marin, S.J., J. Sep. Sci., 2007, vol. 30, p. 1141.

    Article  CAS  Google Scholar 

  16. Kaliszan, R., van Straten, M.A., Markuszewski, M., Cramers, C.A., and Claessens, H.A., J. Chromatogr. A, 1999, vol. 855, p. 455.

    Article  CAS  Google Scholar 

  17. Murakami, F., J. Chromatogr., 1979, vol. 178, p. 393.

    Article  CAS  Google Scholar 

  18. Deineka, V.I., Oleinits, E.Yu., Blinova, I.P., and Deineka, L.A., J. Anal. Chem., 2019, vol. 74, no. 8, p. 778.

    Article  CAS  Google Scholar 

  19. Clifford, M.N., Knight, S., and Kuhnert, N., J. Agric. Food Chem., 2005, vol. 53, p. 3821.

    Article  CAS  Google Scholar 

  20. Lattancio, V., Kroon, P.A., Linsalata, V., and Cardiali, A., J. Funct. Foods, 2009, vol. 1, p. 131.

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research, project no. 20-33-90031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Deineka.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deineka, V.I., Oleinits, E.Y., Chulkov, A.N. et al. Control of the Selectivity of the Separation of Dicaffeoylquinic Acids in Reversed-Phase Chromatography. J Anal Chem 77, 759–765 (2022). https://doi.org/10.1134/S1061934822060041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934822060041

Keywords:

Navigation