Skip to main content
Log in

Electrochemical Sensors for the Simultaneous Detection of Phenolic Antioxidants

  • REVIEWS
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Electrochemical sensors for the simultaneous determination of natural or synthetic phenolic antioxidants, their analytical characteristics, advantages, and disadvantages are considered. The data are systematized by the type of the sensitive layer of the sensor responding to the target analytes, including carbon nanomaterials, nanoparticles of metal oxides, polymer coatings, and their various combinations. The methods of obtaining the considered sensors, their advantages, and disadvantages are also discussed. In conclusion, the directions of the further development of the electroanalysis of structurally related phenolic antioxidants are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Halliwell, B. and Gutteridge, J.M.C., Free Radicals in Biology and Medicine, Oxford: Oxford Univ. Press, 2015, 5th ed. https://doi.org/10.1093/acprof:oso/9780198717478.003.0003

  2. Li, A.N., Li, S., Zhang, Y.J., Xu, X.R., Chen, Y.M., and Li, H.B., Nutrients, 2014, vol. 6, no. 12, p. 6020. https://doi.org/10.3390/nu6126020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ziyatdinova, G.K. and Budnikov, H.C., J. Anal. Chem., 2018, vol. 73, no. 10, p. 946. https://doi.org/10.1134/S106193481810012X

    Article  CAS  Google Scholar 

  4. Lattanzio, V., in Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes, Ramawat, K.G. and Merillon, J.M., Eds., Berlin: Springer, 2013, p. 1544. https://doi.org/10.1007/978-3-642-22144-6_57

  5. Hudson, B.J.F., Food Antioxidants, London: Elsevier, 1990.

    Book  Google Scholar 

  6. Sherwin, E.R., in Food Additives, Branen, A.L., Davidson, P.M., and Salminen, S., Eds., New York: Marcel Dekker, 1990, p. 139.

    Google Scholar 

  7. Ignat, I., Volf, I., and Popa, V.I., in Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes, Ramawat, K.G. and Merillon, J.M., Eds., Berlin: Springer, 2013, p. 2061. https://doi.org/10.1007/978-3-642-22144-6_56

  8. Kafkas, N.E., Kosar, M., Oz, A.T., and Mitchell, A.E., J. Food Qual., 2018, vol. 2018, 3836064. https://doi.org/10.1155/2018/3836064

    Article  CAS  Google Scholar 

  9. Kalogiouri, N.P. and Samanidou, V.F., Rev. Sep. Sci., 2019, vol. 1, no. 1, p. 17. https://doi.org/10.17145/rss.19.003

    Article  Google Scholar 

  10. Huck, C.W., Stecher, G., Scherz, H., and Bonn, G., Electrophoresis, 2005, vol. 26, nos. 7–8, p. 1319. https://doi.org/10.1002/elps.200410315

    Article  CAS  PubMed  Google Scholar 

  11. Cesla, P., Fischer, J., and Jandera, P., Electrophoresis, 2010, vol. 31, no. 13, p. 2200. https://doi.org/10.1002/elps.200900689

    Article  CAS  PubMed  Google Scholar 

  12. Milevskaya, V.V., Prasad, S., and Temerdashev, Z.A., Microchem. J., 2019, vol. 145, p. 1046. https://doi.org/10.1016/j.microc.2018.11.041

    Article  CAS  Google Scholar 

  13. Ziyatdinova, G. and Budnikov, H., Monatsh. Chem., 2015, vol. 146, no. 5, p. 741. https://doi.org/10.1007/s00706-014-1376-5

    Article  CAS  Google Scholar 

  14. Chiorcea-Paquim, A.M., Enache, T.A., De Souza Gil, E., and Oliveira-Brett, A.M., Compr. Rev. Food Sci. Food Saf., 2020, vol. 19, no. 4, p. 1680. https://doi.org/10.1111/1541-4337.12566

    Article  CAS  PubMed  Google Scholar 

  15. Budnikov, G.K., Evtyugin, G.A., and Maistrenko, V.N., Modifitsirovannye elektrody dlya vol’tamperometrii v khimii, biologii i meditsine (Modified Electrodes for Voltammetry in Chemistry, Biology, and Medicine), Moscow: BI-NOM. Laboratoriya znanii, 2012.

  16. Temerk, Y., Ibrahim, H., and Schuhmann, W., Electroanalysis, 2019, vol. 31, no. 6, p. 1095. https://doi.org/10.1002/elan.201900066

    Article  CAS  Google Scholar 

  17. Karaboduk, K. and Hasdemir, E., Rev. Roum. Chim., 2020, vol. 65, no. 4, p. 375. https://doi.org/10.33224/rrch.2020.65.4.07

    Article  Google Scholar 

  18. Alpar, N., Yardım, Y., and Şentürk, Z., Sens. Actuators, B, 2018, vol. 257, p. 398. https://doi.org/10.1016/j.snb.2017.10.100

    Article  CAS  Google Scholar 

  19. Ziyatdinova, G. and Budnikov, H., in Nanoanalytics: Nanoobjects and Nanotechnologies in Analytical Chemistry, Shtykov, S.N., Ed., Boston: De Gruyter, 2018, p. 223. https://doi.org/10.1515/9783110542011-007

  20. Abdel-Hamid, R., Bakr, A., Newair, E.F., and Garcia, F., Beverages, 2019, vol. 5, no. 1, 17. https://doi.org/10.3390/beverages5010017

    Article  CAS  Google Scholar 

  21. Kalaiyarasi, J., Meenakshi, S., Pandian, K., and Gopinath, S.C.B., Microchim. Acta, 2017, vol. 184, no. 7, p. 2131. https://doi.org/10.1007/s00604-017-2161-z

    Article  CAS  Google Scholar 

  22. Li, C., Fu, J., Tan, X., Song, X., and Li, Q., Anal. Methods, 2019, vol. 11, no. 32, p. 4099. https://doi.org/10.1039/C9AY01018A

    Article  CAS  Google Scholar 

  23. Yiğit, A., Alpar, N., Yardım, Y., Çelebi, M., and Şentürk, Z., Electroanalysis, 2018, vol. 30, no. 9, p. 2011. https://doi.org/10.1002/elan.201800229

    Article  CAS  Google Scholar 

  24. Lin, X.-Q., He, J.-B., and Zha, Z.-G., Sens. Actuators, B, 2006, vol. 119, no. 2, p. 608. https://doi.org/10.1016/j.snb.2006.01.016

    Article  CAS  Google Scholar 

  25. Ghoreishi, S.M., Behpour, M., Khayatkashani, M., and Motaghedifard, M.H., Anal. Methods, 2011, vol. 3, no. 3, p. 636. https://doi.org/10.1039/C0AY00691B

    Article  CAS  PubMed  Google Scholar 

  26. Ghoreishi, S.M., Behpour, M., Khayatkashani, M., and Motaghedifard, M.H., Digest J. Nanomater. Biostruct., 2011, vol. 6, no. 2, p. 625.

    Google Scholar 

  27. Jin, J.-H., Kim, H., and Jung, S., Biotechnol. Lett., 2009, vol. 31, no. 11, 1739. https://doi.org/10.1007/s10529-009-0066-6

    Article  CAS  PubMed  Google Scholar 

  28. Guo, J., Kong, W., Wang, L., Ren, H., Sun, X., Ye, B., and Shen, Q., Sens. Lett., 2013, vol. 11, no. 3, p. 603. https://doi.org/10.1166/sl.2013.2823

    Article  CAS  Google Scholar 

  29. Jing, L., Lin, J., Fei, Q., Tang, H., Yang, X., and Sun, C., Int. J. Electrochem. Sci., 2017, vol. 12, no. 9, p. 8504. https://doi.org/10.20964/2017.09.48

    Article  CAS  Google Scholar 

  30. Feng, M. and Feng, H., J. Nanosci. Nanotechnol., 2013, vol. 13, no. 2, p. 937. https://doi.org/10.1166/jnn.2013.6005

    Article  CAS  PubMed  Google Scholar 

  31. De Silva, K.K.H., Huang, H.-H., Joshi, R.K., and Yoshimura, M., Carbon, 2017, vol. 119, p. 190. https://doi.org/10.1016/j.carbon.2017.04.025

    Article  CAS  Google Scholar 

  32. Liu, L., Gou, Y., Gao, X., Zhang, P., Chen, W., Feng, S., Hu, F., and Li, Y., Mater. Sci. Eng., C, 2014, vol. 42, p. 227. https://doi.org/10.1016/j.msec.2014.05.045

    Article  CAS  Google Scholar 

  33. Pwavodi, P.C., Ozyurt, V.H., Asir, S., and Ozsoz, M., Micromachines, 2021, vol. 12, no. 3, 312. https://doi.org/10.3390/mi12030312

    Article  PubMed  PubMed Central  Google Scholar 

  34. Xie, Z., Li, G., Fu, Y., Sun, M., and Ye, B., Talanta, 2017, vol. 165, p. 553. https://doi.org/10.1016/j.talanta.2017.01.021

    Article  CAS  PubMed  Google Scholar 

  35. Xie, Z., Lu, W., Yang, L., Li, G., and Ye, B., Talanta, 2017, vol. 170, p. 358. https://doi.org/10.1016/j.talanta.2017.04.022

    Article  CAS  PubMed  Google Scholar 

  36. Arvand, M. and Daneshvar, S., J. Anal. Chem., 2019, vol. 74, no. 9, p. 920. https://doi.org/10.1134/S106193481909003X

    Article  CAS  Google Scholar 

  37. Li, X., Niu, Q., Li, G., Zhan, T., and Sun, W., J. Braz. Chem. Soc., 2011, vol. 22, no. 3, p. 422. https://doi.org/10.1590/S0103-50532011000300003

    Article  CAS  Google Scholar 

  38. Huang, J., Shen, X., Hu, Q., Ma, Y., Bai, S., Yue, G., Yu, X., Zeng, Q., and Wang, L., RSC Adv., 2016, vol. 6, no. 98, p. 95435. https://doi.org/10.1039/C6RA20459G

    Article  CAS  Google Scholar 

  39. Fu, Y., Lin, Y., Chen, T., and Wang, L., J. Electroanal. Chem., 2012, vol. 687, p. 25. https://doi.org/10.1016/j.jelechem.2012.09.040

    Article  CAS  Google Scholar 

  40. Foukmeniok, S., Ilboudo, O., Njanja, E., Tapsoba, I., Pontie, M., and Kenfack, I.T., J. Appl. Electrochem., 2019, vol. 49, no. 6, p. 575. https://doi.org/10.1007/s10800-019-01300-7

    Article  CAS  Google Scholar 

  41. Foukmeniok, S., Ilboudo, O., Karanga, Y., Tapsoba, I., Njanja, E., and Kenfack, I.T., SN Appl. Sci., 2019, vol. 1, no. 5, 385. https://doi.org/10.1007/s42452-019-0413-8

    Article  CAS  Google Scholar 

  42. Ziyatdinova, G.K., Kozlova, E.V., Ziganshina, E.R., and Budnikov, G.K., Butlerov. Soobshch., 2015, vol. 42, no. 6, p. 132.

    Google Scholar 

  43. Gan, T., Shi, Z., Deng, Y., Sun, J., and Wang, H., Electrochim. Acta, 2014, vol. 147, p. 157. https://doi.org/10.1016/j.electacta.2014.09.116

    Article  CAS  Google Scholar 

  44. Puangjan, A. and Chaiyasith, S., Electrochim. Acta, 2016, vol. 211, p. 273. https://doi.org/10.1016/j.electacta.2016.04.185

    Article  CAS  Google Scholar 

  45. Yola, M.L., Gupta, V.K., Eren, T., Şenc, A.E., and Atar, N., Electrochim. Acta, 2014, vol. 120, p. 204. https://doi.org/10.1016/j.electacta.2013.12.086

    Article  CAS  Google Scholar 

  46. Yola, M.L. and Atar, N., Electrochim. Acta, 2014, vol. 119, p. 24. https://doi.org/10.1016/j.electacta.2013.12.028

    Article  CAS  Google Scholar 

  47. Zhai, H., Wang, H., Wang, S., Chen, Z., Wang, S., Zhou, Q., and Pan, Y., Sens. Actuators, B, 2018, vol. 255, no. 2, p. 1771. https://doi.org/10.1016/j.snb.2017.08.196

    Article  CAS  Google Scholar 

  48. Elçin, S., Yola, M.L., Eren, T., Girgin, B., and Atar, N., Electroanalysis, 2016, vol. 28, no. 3, p. 611. https://doi.org/10.1002/elan.201500495

    Article  CAS  Google Scholar 

  49. Tursynbolat, S., Bakytkarim, Y., Huang, J., and Wang, L., J. Pharm. Anal., 2019, vol. 9, no. 5, p. 358. https://doi.org/10.1016/j.jpha.2019.03.009

    Article  PubMed  PubMed Central  Google Scholar 

  50. Liu, C., Huang, J., and Wang, L., Microchim. Acta, 2018, vol. 185, no. 9, 414. https://doi.org/10.1007/s00604-018-2947-7

    Article  CAS  Google Scholar 

  51. Özdokur, K.V. and Koçak, Ç.C., Electroanalysis, 2019, vol. 31, no. 12, p. 2359. https://doi.org/10.1002/elan.201900144

    Article  CAS  Google Scholar 

  52. Ziyatdinova, G., Guss, E., Morozova, E., Budnikov, H., Davletshin, R., Vorobev, V., and Osin, Yu., Food Anal. Methods, 2019, vol. 12, no. 10, p. 2250. https://doi.org/10.1007/s12161-019-01585-6

    Article  Google Scholar 

  53. Ziyatdinova, G.K., Guss, E.V., Morozova, E.V., Budnikov, H.C., J. Anal. Chem., 2021, vol. 76, no. 3, p. 371. https://doi.org/10.1134/S1061934821030163

    Article  CAS  Google Scholar 

  54. Zhupanova, A., Guss, E., Ziyatdinova, G., and Budnikov, H., Anal. Lett., 2020, vol. 53, no. 13, p. 2170. https://doi.org/10.1080/00032719.2020.1732402

    Article  CAS  Google Scholar 

  55. Guss, E.V., Ziyatdinova, G.K., Zhupanova, A.S., and Budnikov, H.C., J. Anal. Chem., 2020, vol. 75, no. 4, p. 526. https://doi.org/10.1134/S106193482004005X

    Article  CAS  Google Scholar 

  56. Kumar, D.R., Sayed, M.S., Baynosa, M.L., and Shim, J.-J., Microchem. J., 2020, vol. 157, 105023. https://doi.org/10.1016/j.microc.2020.105023

    Article  CAS  Google Scholar 

  57. Ma, Y., Kong, Y., Xu, J., Deng, Y., Lu, M., Yu, R., Yuan, M., Li, T., and Wang, J., Talanta, 2020, vol. 208, 120373. https://doi.org/10.1016/j.talanta.2019.120373

    Article  CAS  PubMed  Google Scholar 

  58. Ran, X., Yang, L., Zhang, J., Deng, G., Li, Y., Xie, X., Zhao, H., and Li, C.-P., Anal. Chim. Acta, 2015, vol. 892, p. 85. https://doi.org/10.1016/j.aca.2015.08.046

    Article  CAS  PubMed  Google Scholar 

  59. Della Pelle, F., Rojas, D., Silveri, F., Ferraro, G., Fratini, E., Scroccarello, A., Escarpa, A., and Compagnone, D., Microchim. Acta, 2020, vol. 187, no. 5, 296. https://doi.org/10.1007/s00604-020-04281-z

    Article  CAS  Google Scholar 

  60. Tomas-Barberan, F.A. and Clifford, M.N., J. Sci. Food Agric., 2000, vol. 80, no. 7, p. 1073. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1073::AID-JSFA568>3.0.CO;2-B

    Article  CAS  Google Scholar 

  61. Roginskii, V.A., Fenol’nye antioksidanty. Reaktsionnaya sposobnost’ i effektivnost’ (Phenolic Antioxidants: Reactivity and Efficiency), Moscow: Nauka, 1988.

  62. Medeiros, R.A., Rocha-Filho, R.C., and Fatibello-Filho, O., Food Chem., 2010, vol. 123, no. 3, p. 886. https://doi.org/10.1016/j.foodchem.2010.05.010

    Article  CAS  Google Scholar 

  63. Ziyatdinova, G., Khuzina, A., and Budnikov, H., Anal. Lett., 2012, vol. 45, no. 12, p. 1670. https://doi.org/10.1080/00032719.2012.677788

    Article  CAS  Google Scholar 

  64. Gunckel, S., Santander, P., Cordano, G., Ferreira, J., Munoz, S., Nunez-Vergara, L.J., and Squella, J.A., Chem. Biol. Interact., 1998, vol. 114, nos. 1–2, p. 45. https://doi.org/10.1016/S0009-2797(98)00041-6

    Article  CAS  PubMed  Google Scholar 

  65. Jakubczyk, M. and Michalkiewicz, S., Int. J. Electrochem. Sci., 2018, vol. 13, no. 5, p. 4251. https://doi.org/10.20964/2018.05.76

    Article  CAS  Google Scholar 

  66. Ziyatdinova, G.K., Ziganshina, E.R., Os’kina, K.S., and Budnikov, H.C., J. Anal. Chem., 2014, vol. 69, no. 8, p. 750. https://doi.org/10.1134/S1061934814080140

    Article  CAS  Google Scholar 

  67. Tomášková, M., Chýlková, J., Jehlička, V., Navrátil, T., Švancara, I., and Šelešovská, R., Fuel, 2014, vol. 123, p. 107. https://doi.org/10.1016/j.fuel.2014.01.052

    Article  CAS  Google Scholar 

  68. Freitas, K.H.G. and Fatibello-Filho, O., Talanta, 2010, vol. 81, no. 3, p. 1102. https://doi.org/10.1016/j.talanta.2010.02.004

    Article  CAS  PubMed  Google Scholar 

  69. Thomas, A. and Kumar, K.G., J. Electrochem. Soc., 2018, vol. 165, no. 9, p. B351. https://doi.org/10.1149/2.0241809jes

    Article  CAS  Google Scholar 

  70. Hoffmann da Rocha, A.A., Casagrande, M., de Souza Schaumlöffel, L., da Silva, Y.P., and Sartori Piatnicki, C.M, Energy Fuels, 2017, vol. 31, no. 7, p. 7076. https://doi.org/10.1021/acs.energyfuels.7b00204

    Article  CAS  Google Scholar 

  71. Angelis, P.N., de Cássia Mendonça, J., Rocha, L.R., Capelari, T.B., Prete, M.C., Segatelli, M.G., Borsato, D., and Tarley, C.R.T., Electroanalysis, 2020, vol. 32, no. 6, p. 1198. https://doi.org/10.1002/elan.201900479

    Article  CAS  Google Scholar 

  72. Ziyatdinova, G., Os’kina, K., Ziganshina, E., and Budnikov, H., Anal. Methods, 2015, vol. 7, no. 19, p. 8344. https://doi.org/10.1039/C5AY01973G

    Article  CAS  Google Scholar 

  73. Caramit, R.P., de Freitas, AndradeA.G., de Souza, J.B.G., de Araujo, T.A., Viana, L.H., Trindade, M.A.G., and Ferreira, V.S., Fuel, 2013, vol. 105, p. 306. https://doi.org/10.1016/j.fuel.2012.06.062

    Article  CAS  Google Scholar 

  74. Caramit, R.P., Araújo, A.S.A., Fogliatto, D.K., Viana, L.H., Trindade, M.A.G., and Ferreira, V.S., Anal. Methods, 2015, vol. 7, no. 9, p. 3764. https://doi.org/10.1039/C4AY02875A

    Article  CAS  Google Scholar 

  75. Wang, P., Han, C., Zhou, F., Lu, J., Han, X., and Wang, Z., Sens. Actuators, B, 2016, vol. 224, p. 885. https://doi.org/10.1016/j.snb.2015.10.098

    Article  CAS  Google Scholar 

  76. Lin, X., Ni, Y., and Kokot, S., Anal. Chim. Acta, 2013, vol. 765, p. 54. https://doi.org/10.1016/j.aca.2012.12.036

    Article  CAS  PubMed  Google Scholar 

  77. Yue, X., Song, W., Zhu, W., Wang, J., and Wang, Y., Electrochim. Acta, 2015, vol. 182, p. 847. https://doi.org/10.1016/j.electacta.2015.09.162

    Article  CAS  Google Scholar 

  78. Carvalho, R.M.S., Neto, S.Y., Silva, F.C., Damos, F.S., and Luz, R., Electroanalysis, 2016, vol. 28, no. 12, p. 2930. https://doi.org/10.1002/elan.201600187

    Article  CAS  Google Scholar 

  79. Gan, T. and Zhao, A., Sens. Actuators, B, 2016, vol. 235, p. 707. https://doi.org/10.1016/j.snb.2016.05.137

    Article  CAS  Google Scholar 

  80. Wu, L., Yin, W., Tang, K., Li, D., Shao, K., Zuo, Y., Ma, J., Liu, J., and Han, H., Anal. Chim. Acta, 2016, vol. 933, p. 89. https://doi.org/10.1016/j.aca.2016.06.020

    Article  CAS  PubMed  Google Scholar 

  81. Ziyatdinova, G., Guss, E., and Budnikov, H., J. Electroanal. Chem., 2020, vol. 859, 113885. https://doi.org/10.1016/j.jelechem.2020.113885

    Article  CAS  Google Scholar 

  82. dos Santos Moretti, E., Midori de Oliveira, F., Scheel, G.L., DalíAntônia, L.H., Borsato, D., Kubota, L.T., Segatelli, M.G., and Tarley, C.R.T., Electrochim. Acta, 2016, vol. 212, p. 322. https://doi.org/10.1016/j.electacta.2016.06.174

    Article  CAS  Google Scholar 

  83. Tormin, T.F., Cunha, R.R., Richter, E.M., and Munoz, R.A.A., Talanta, 2012, vol. 99, p. 527. https://doi.org/10.1016/j.talanta.2012.06.024

    Article  CAS  PubMed  Google Scholar 

  84. Bavol, D., Economou, A., Zima, J., Barek, J., and Dejmkova, H., Talanta, 2018, vol. 178, p. 231. https://doi.org/10.1016/j.talanta.2017.09.032

    Article  CAS  PubMed  Google Scholar 

  85. Ziyatdinova, G., Ziganshina, E., and Budnikov, H., Electrochim. Acta, 2014, vol. 145, p. 209. https://doi.org/10.1016/j.electacta.2014.08.062

    Article  CAS  Google Scholar 

  86. Ziyatdinova, G.K., Kozlova, E.V., Ziganshina, E.R., and Budnikov, H.C., Uch. Zap. Kazan. Univ., Ser. Estestv. Nauki, 2014, vol. 156, no. 4, p. 29.

    CAS  Google Scholar 

  87. Ziyatdinova, G., Kozlova, E., Ziganshina, E., and Budnikov, H., Monatsh. Chem., 2016, vol. 147, no. 1, p. 191. https://doi.org/10.1007/s00706-015-1559-8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Ziyatdinova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziyatdinova, G.K., Zhupanova, A.S. & Budnikov, H.C. Electrochemical Sensors for the Simultaneous Detection of Phenolic Antioxidants. J Anal Chem 77, 155–172 (2022). https://doi.org/10.1134/S1061934822020125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934822020125

Keywords:

Navigation