Skip to main content
Log in

Enantioselective Voltammetric Sensors Based on Amino Acid Complexes of Cu(II), Co(III), and Zn(II)

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The electrochemical and analytical characteristics of enantioselective sensors based on glassy carbon electrodes modified by chelate complexes (bis(L-phenylalaninate) copper(II), glycinato-L-phenylalaninate copper(II), tris(L-phenylalaninate) cobalt(II), bis(L-phenylalaninate) zinc) are studied. It is found that the most promising sensor for determining tryptophan enantiomers is the sensor modified by copper(II) (bis)L-phenylalaninate. In determining tryptophan enantiomers, this sensor provides a linear concentration range from 6.25 × 10–7 to 0.5 × 10–3 M for L-tryptophan and from 5 × 10–6 to 0.5 × 10–3 M for D-tryptophan. The sensor is more sensitive to L-tryptophan. The proposed sensor was used for the recognition and determination of tryptophan enantiomers in human urine and plasma samples, and also in a mixture of enantiomers. The statistical assessment of the results of determinations by the spiked–found method indicates the absence of a significant systematic error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Maistrenko, V.N., Evtyugin, G.A., and Zil’berg, R.A., Enantioselektivnye vol’tampero-metricheskie sensory (Enantioselective Voltammetric Sensors), Ufa: Bashkir. Gos. Univ., 2018.

  2. Maistrenko, V.N. and Zil’berg, R.A., J. Anal. Chem., 2020, vol. 75, no. 12, p. 1514.

    Article  CAS  Google Scholar 

  3. Niu, X., Yang, X., Li, H., Liu, J., Liu, Z., and Wang, K., Microchim. Acta, 2020, vol. 187, 676.

    Article  CAS  Google Scholar 

  4. Maistrenko, V.N., Sidel’nikov, A.V., and Zil’berg, R.A., J. Anal. Chem., 2018, vol. 73, no. 1, p. 1.

    Article  CAS  Google Scholar 

  5. Iacob, B.-C., Bodoki, E., and Oprean, R., in Handbook of Sustainable Polimers: Processing and Applications, Thakur, V.K. and Thakur, M.R., Eds., Jenny Stanford, 2016, p. 587.

    Google Scholar 

  6. Moein, M.M., Talanta, 2021, vol. 224, 121794.

    Article  CAS  PubMed  Google Scholar 

  7. Bel Bruno, J.J., Chem. Rev., 2019, vol. 119, p. 94.

    Article  CAS  Google Scholar 

  8. Radi, A.-E., Wahdan, T., and El-Basiony, A., Curr. Anal. Chem., 2019, vol. 15, p. 219.

    Article  CAS  Google Scholar 

  9. Kingsford, O.J., Zhang, D., Ma, Y., Wu, Y., and Zhu, G., J. Electrochem. Soc., 2019, vol. 166, p. B1226.

    Article  CAS  Google Scholar 

  10. Stoian, I.A., Iacob, B.C., Ramalho, J.P.P., and Marian, I.O., Chiș, V., Bodoki, E., and Oprean, R., Electrochim. Acta, 2019, vol. 326, 134961.

    Article  CAS  Google Scholar 

  11. Upadhyay, S.S., Gadhari, N.S., and Srivastava, A.K., Biosens. Bioelectron., 2020, vol. 165, 112397.

    Article  CAS  PubMed  Google Scholar 

  12. Zil’berg, R.A., Maistrenko, V.N., Yarkaeva, Yu.A., and Dubrovskii, D.I., J. Anal. Chem., 2019, vol. 74, p. 1245.

    Article  Google Scholar 

  13. Zilberg, R.A., Maistrenko, V.N., Kabirova, L.R., and Dubrovsky, D.I., Anal. Methods, 2018, vol. 10, p. 1886.

    Article  CAS  Google Scholar 

  14. Atta, N.F., Galal, A., and Ahmed, Y.M., J. Electrochem. Soc., 2019, vol. 166, p. B623.

    Article  Google Scholar 

  15. Sun, Y., He, J., Huang, J., Sheng, Y., Xu, D., Bradley, M., and Zhang, R., J. Electroanal. Chem., 2020, vol. 865, 114130.

    Article  CAS  Google Scholar 

  16. Zhang, Y., Liu, G., Yao, X., Gao, S., Xie, J., Xu, H., and Lin, N., Cellulose, 2018, vol. 25, p. 3861.

    Article  CAS  Google Scholar 

  17. Zil’berg, R.A., Yarkaeva, Yu.A., Provorova, Yu.R., Gus’kov, V.Yu., and Maistrenko, V.N., Analitika Kontrol’, 2018, vol. 22, no. 3, p. 292.

    Google Scholar 

  18. Ghiamati, E. and Oliaei, S., SOJ Biochem., 2017, vol. 3, p. 1.

    Article  Google Scholar 

  19. Pettit, L.D., Pure Appl. Chem., 1984, vol. 56, no. 2, p. 247.

    Article  Google Scholar 

  20. Ariga, K. and Shionoya, M., Bull. Chem. Soc. Jpn., 2021, vol. 94, p. 839.

    Article  CAS  Google Scholar 

  21. Bao, L., Dai, J., Yang, L., Ma, J., Tao, Y., Deng, L., and Kong, Y., J. Electrochem. Soc., 2015, vol. 162, p. H486.

    Article  CAS  Google Scholar 

  22. Chen, X., Zhang, S., Shan, X., and Chen, Z., Anal. Chim. Acta, 2019, vol. 1072, p. 54.

    Article  CAS  PubMed  Google Scholar 

  23. Zhou, Y., Nagaoka, T., Yu, B., and Levon, K., Anal. Chem., 2009, vol. 81, p. 1888.

    Article  CAS  PubMed  Google Scholar 

  24. Chen, Q., Zhou, J., Han, Q., Wang, Y., and Fu, Y., Colloids Surf., B, 2012, vol. 92, p. 130.

    Article  CAS  Google Scholar 

  25. Zhao, Y., Cui, L., Ke, W., Zheng, F., and Li, X., ACS Sustainable Chem. Eng., 2019, vol. 7, p. 5157.

    Article  CAS  Google Scholar 

  26. Kolesov, S.V., Gurina, M.S., and Mudarisova, R.Kh., Polym. Sci., Ser. A, 2019, vol. 61, no. 3, p. 253.

    Article  CAS  Google Scholar 

  27. Berestova, T.V., Gizatov, R.R., Galimov, M.N., and Mustafin, A.G., J. Mol. Struct., 2021, vol. 1236, 130303.

    Article  CAS  Google Scholar 

  28. Berestova, T.V., Khursan, S.L., and Mustafin, A.G., Spectrochim. Acta, Part A, 2020, vol. 229, 117950.

    Article  CAS  Google Scholar 

  29. Alam, M.M., Rahman, S.M.M., Rahman, M.M., and Islam, S.M.S., J. Sci. Res., 2010, vol. 2, no. 1, p. 91.

    Article  CAS  Google Scholar 

  30. Stewart, J.J.P., J. Comput. Chem., 1989, vol. 10, no. 2, p. 209.

    Article  CAS  Google Scholar 

  31. Stewart, J.J.P., J. Comput. Chem., 1989, vol. 10, no. 2, p. 221.

    Article  CAS  Google Scholar 

  32. Stewart, J.J.P., J. Comput. Chem., 1991, vol. 12, no. 3, p. 320.

    Article  CAS  Google Scholar 

  33. Stewart, J.J.P., J. Mol. Model., 2004, vol. 10, no. 2, p. 155.

    Article  CAS  PubMed  Google Scholar 

  34. Delley, B., J. Chem. Phys., 1990, vol. 92, p. 508.

    Article  CAS  Google Scholar 

  35. Delley, B., J. Chem. Phys., 2000, vol. 113, p. 7756.

    Article  CAS  Google Scholar 

  36. Materials Studio Version 6.0, San Diego: Accelrys Inc., 2011.

  37. Sun, H., J. Phys. Chem. B, 1998, vol. 102, no. 38, p. 7338.

    Article  CAS  Google Scholar 

  38. Akkermans, R.L.C., Spenley, N.A., and Robertson, S.H., Mol. Simul., 2013, vol. 39, p. 1153.

    Article  CAS  Google Scholar 

  39. Cheng, H., Chen, C., and Zhang, S., Anal. Sci., 2009, vol. 25, no. 10, p. 1221.

    Article  CAS  PubMed  Google Scholar 

  40. Xuan, C., Xia, Q., Xu, J., Wang, Q., Lin, X., and Fu, Y., Anal. Methods, 2016, vol. 8, no. 17, p. 3564.

    Article  CAS  Google Scholar 

  41. Xu, J., Wang, Q., Xuan, C., Xia, Q., Lin, X., and Fu, Y., Electroanalysis, 2016, vol. 28, p. 868.

    Article  CAS  Google Scholar 

  42. Gou, H., He, J., Mo, Z., Wei, X., Hu, R., Wang, Y., and Guo, R., J. Electrochem. Soc., 2016, vol. 163, p. B272.

    Article  CAS  Google Scholar 

  43. Dalgliesh, C.E., J. Chem. Soc., 1952, vol. 137, p. 3940.

    Article  Google Scholar 

  44. Basolo, F. and Johnson, R.C., Coordination Chemistry: The Chemistry of Metal Complexes, The General Chemistry Monograph Series, Vew York: Benjamin, 1964.

  45. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2004.

    Google Scholar 

  46. Budnikov, H.C., Maistrenko, V.N., and Vyaselev, M.R., Osnovy sovremennogo elektrokhimicheskogo analiza (Fundamentals of Modern Electrochemical Analysis), Moscow: BINOM, 2003.

  47. Stroev, E.A., Biologicheskaya khimiya (Biological Chemistry), Moscow: Vysshaya Shkola, 1986.

  48. Song, J., Yang, C., Ma, J., Han, Q., Ran, P., and Fu, Y., Microchim. Acta, 2018, vol. 185, p. 230.

    Article  Google Scholar 

  49. Tao, Y., Dai, J., Kong, Y., and Sha, Y., Anal. Chem., 2014, vol. 86, p. 2633.

    Article  CAS  PubMed  Google Scholar 

  50. Li, Z., Mo, Z., Yan, P., Meng, S., Wang, R., Niu, X., Liu, N., and Guo, R., New J. Chem., 2018, vol. 42, p. 11635.

    Article  CAS  Google Scholar 

  51. Zilberg, R.A., Sidelnikov, A.V., Maistrenko, V.N., Yarkaeva, Y.A., Khamitov, E.M., Maksutova, E.I., and Kornilov, V.M., Electroanalysis, 2018, vol. 30, no. 4, p. 619.

    Article  CAS  Google Scholar 

  52. Zilberg, R.A., Maistrenko, V.N., Kabirova, L.R., and Dubrovsky, D.I., Anal. Methods, 2018, vol. 10, no. 16, p. 1886.

    Article  CAS  Google Scholar 

  53. Yarkaeva, Yu.A., Dubrovskii, D.I., Zil’berg, R.A., and Maistrenko, V.N., Russ. J. Electrochem., 2020, vol. 56, no. 7, p. 544.

    Article  CAS  Google Scholar 

  54. Kabirova, L.R., Dubrovskii, D.I., Nikonova, N.A., Kosikhina, Yu.K., Zil’berg, R.A., and Maistrenko, V.N., Vestn. Bashkir. Univ., 2018, vol. 23, no. 4, p. 1088.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 21-13-00169, https://rscf.ru/project/21-13-00169/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Zil’berg.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zil’berg, R.A., Zagitova, L.R., Vakulin, I.V. et al. Enantioselective Voltammetric Sensors Based on Amino Acid Complexes of Cu(II), Co(III), and Zn(II). J Anal Chem 76, 1438–1448 (2021). https://doi.org/10.1134/S1061934821120145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934821120145

Keywords:

Navigation