Skip to main content
Log in

A Chiral Stationary Phase Based on Guanine Conglomerates Obtained under Viedma Ripening Conditions

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A new chiral stationary phase based on guanine is proposed. An Inerton NAW-HDMS inert substrate modified with 10% guanine under Viedma ripening conditions is chosen as the main test sample. The modified adsorbent obtained by applying guanine in the Viedma ripening mode is capable of chiral recognition. An analysis of the thermodynamic functions of adsorption showed that the differences in molar changes in the internal energy and entropy of the adsorption of enantiomers of haloalkanes are due to the predominant adsorption of one of enantiomers inside a cavity of the supramolecular structure of guanine, and of the other, on its surface. It was found that the proposed stationary phase possesses enantioselectivity with respect to haloalkanes. Racemates of 2-bromoheptane, 1,2-dichloropropane, 1,2-dibromopropane, and 2-chlorobutane were separated by gas chromatography. The best separation was achieved for the 2-chloropentane racemate: the separation factor α was 2.43.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Blaschke, G., Kraft, H.P., and Markgraf, H., Chem. Ber., 1980, vol. 113, no. 6, p. 2318.

    Article  CAS  Google Scholar 

  2. Viedma, C., Phys. Rev. Lett., 2005, vol. 94, no. 6, 065504.

    Article  Google Scholar 

  3. Viedma, C., McBride, J.M., Kahr, B., and Cintas, P., Angew. Chem., Int. Ed. Engl., 2013, vol. 52, no. 40, p. 10545.

    Article  CAS  Google Scholar 

  4. Kondepudi, D.K., Digits, J., and Bullock, K., Chirality, 1995, vol. 7, no. 2, p. 62.

    Article  CAS  Google Scholar 

  5. Kondepudi, D.K. and Asakura, K., Acc. Chem. Res., 2001, vol. 34, no. 12, p. 946.

    Article  CAS  Google Scholar 

  6. Kondepudi, D.K., Int. J. Quantum Chem., 2004, vol. 98, no. 2, p. 222.

    Article  CAS  Google Scholar 

  7. Kondepudi, D.K. and Nelson, G.W., Phys. Lett. A, 1984, vol. 106, no. 4, p. 203.

    Article  Google Scholar 

  8. Ramamurthy, V., Tetrahedron, 1986, vol. 42, no. 21, p. 5753.

    Article  CAS  Google Scholar 

  9. Scheffer, J.R., Garcia-Garibay, M.A., and Nalamasu, O., Org. Photochem., 1987, vol. 8, p. 249.

    CAS  Google Scholar 

  10. Ramamurthy, V. and Venkatesan, K., Chem. Rev., 1987, vol. 87, no. 2, p. 433.

    Article  CAS  Google Scholar 

  11. Sakamoto, M., Chem. Eur., 1997, vol. 3, no. 5, p. 684.

    Article  CAS  Google Scholar 

  12. Feringa, B.L. and Van Delden, R.A., Angew. Chem., Int. Ed. Engl., 1999, vol. 38, no. 23, p. 3418.

    Article  CAS  Google Scholar 

  13. Toda, F., Organic Solid-State Reactions, Dordrecht: Kluwer, 2002.

    Book  Google Scholar 

  14. Inoue, Y. and Ramamurthy, V., Chiral Photochemistry, New York: Marcel Dekker, 2004.

    Book  Google Scholar 

  15. Hazen, R.M., Filley, T.R., and Goodfriend, G.A., Proc. Natl. Acad. Sci. U. S. A., 2001, vol. 98, no. 10, p. 5487.

    Article  CAS  Google Scholar 

  16. Hazen, R.M. and Sholl, D.S., Nat. Mater., 2003, vol. 2, no. 6, p. 367.

    Article  CAS  Google Scholar 

  17. Hem, S.L., Ultrasonics, 1967, vol. 5, no. 4, p. 202.

    Article  CAS  Google Scholar 

  18. Dennehy, R.D., Org. Process Res. Dev., 2003, vol. 7, no. 6, p. 1002.

    Article  CAS  Google Scholar 

  19. Ruecroft, G., Hipkiss, D., Cains, P.W., Ly, T., and Maxted, N., Org. Process Res. Dev., 2005, vol. 9, no. 6, p. 923.

    Article  CAS  Google Scholar 

  20. Castro, L. and Priego-Capote, F., Ultrason. Sonochem., 2007, vol. 14, no. 6, p. 717.

    Article  Google Scholar 

  21. Avalos, M., Babiano, R., Cintas, P., Jimenez, J.L., Palacios, L.C., and Barron, L.D., Chem. Rev., 1998, vol. 98, no. 7, p. 2391.

    Article  CAS  Google Scholar 

  22. Kawasaki, T., Suzuki, K., Hakoda, Y., and Soai, K., Angew. Chem., Int. Ed. Engl., 2008, no. 6, p. 496.

  23. Koshima, H., J. Mol. Struct., 2000, vol. 552, no. 1, p. 111.

    Article  CAS  Google Scholar 

  24. Steiner, T., Angew. Chem., Int. Ed. Engl., 2002, vol. 41, no. 1, p. 48.

    Article  CAS  Google Scholar 

  25. Ciesielski, A., Lena, S., Masiero, S., Spada, G.P., and Samor, P., Angew. Chem., Int. Ed. Engl., 2010, vol. 49, no. 11, p. 1963.

    Article  CAS  Google Scholar 

  26. Sun, H., Xiang, J., Zhou, Q., Yang, Q., Xu, G., and Tang, Y., Int. J. Biol. Macromol., 2010, vol. 46, no. 1, p. 123.

    Article  CAS  Google Scholar 

  27. Xiao, Y., Ng, S.-C., Tan, T.T.Y., and Wang, Y., J. Chromatogr. A, 2012, vol. 1269, p. 52.

    Article  CAS  Google Scholar 

  28. Zhang, X., Zhang, C., Sun, G., Xu, X., Tan, Y., Wu, H., Cao, R., Liu, J., and Wu, J., Instrum. Sci. Technol., 2012, vol. 40, p. 194.

    Article  CAS  Google Scholar 

  29. Zhou, J., Tang, J., and Tang, W., TrAC, Trends Anal. Chem., 2015, vol. 65, p. 22.

    Article  CAS  Google Scholar 

  30. Tang, W., Ng, S.-C., and Sun, D., Modified Cyclodextrins for Chiral Separation, Berlin: Springer, 2013.

    Book  Google Scholar 

  31. Peluso, P., Mamane, V., and Cossu, S., J. Chromatogr. A, 2014, vol. 1363, p. 11.

    Article  CAS  Google Scholar 

  32. Li, G., Yu, W., Ni, J., Liu, T., Liu, Y., Sheng, E., and Cui, Y., Angew. Chem., Int. Ed. Engl., 2008, vol. 47, no. 7, p. 1245.

    Article  CAS  Google Scholar 

  33. Soai, K. and Kawasaki, T., Chirality, 2006, vol. 18, no. 7, p. 469.

    Article  CAS  Google Scholar 

  34. Bolm, C., Bienewald, F., and Seger, A., Angew. Chem., 1996, vol. 108, no. 15, p. 1767.

    Article  Google Scholar 

  35. Xiouras, C., Fytopoulos, A., Jordens, J., Boudouvis, A., Van Gerven, T., and Stefanidis, G.D., Ultrason. Sonochem., 2018, vol. 43, p. 184.

    Article  CAS  Google Scholar 

  36. Gur, D., Pierantoni, M., Dov, N.E., Feldman, Y., Weiner, S., and Addadi, L., Cryst. Growth Des., 2016, vol. 16, no. 9, p. 4975.

    Article  CAS  Google Scholar 

  37. Gus’kov, V.Yu., Gainullina, Yu.Yu., Uteeva, Zh.D., and Musabirov, D.E., J. Anal. Chem., 2020, vol. 75, no. 6, p. 537.

    Article  Google Scholar 

  38. Nafikova, A.R., Allayarova, D.A., and Gus’kov, V.Yu., J. Anal. Chem., 2019, vol. 74, no. 6, p. 565.

    Article  CAS  Google Scholar 

  39. Gus’kov, V.Yu., Gus’kova, M.V., Zaripova, A.I., and Ramazanova, G.A., Russ. J. Phys. Chem. A, 2020, vol. 94, p. 1208.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-73-10079.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Yu. Gainullina.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sairanova, N.I., Gainullina, Y.Y. A Chiral Stationary Phase Based on Guanine Conglomerates Obtained under Viedma Ripening Conditions. J Anal Chem 76, 1321–1326 (2021). https://doi.org/10.1134/S1061934821110125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934821110125

Keywords:

Navigation