Skip to main content
Log in

A Voltammetric Sensor Based on a 3,4,9,10-Perylenetetracarboxylic Acid Composite for the Recognition and Determination of Tyrosine Enantiomers

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

An enantioselective voltammetric sensor based on a glassy carbon electrode modified with a composite of a polyelectrolyte complex of chitosan, Carboblack C graphitized thermal carbon black, and 3,4,9,10-perylenetetracarboxylic acid is developed for the recognition and determination of tyrosine enantiomers. The enantioselectivity of the sensor is due to the formation of self-organizing chiral nanoclusters of 3,4,9,10-perylenetetracarboxylic acid. The electrochemical and analytical characteristics of the sensor are studied. The proposed sensor is used to recognize and determine L- and D-enantiomers of tyrosine in samples of urine and human blood plasma, as well as in a mixture. To increase the probability of the recognition of tyrosine enantiomers in determining them in a mixture, the chemometric method of projection to latent structures is used. It is shown that the proposed sensor ensures the determination of the ratio of L- and D-enantiomers of tyrosine in a mixture with a high probability and a relative error of less than 8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Fernstrom, J.D. and Fernstrom, M.H., J. Nutr., 2007, vol. 137, no. 6, p. 1539.

    Article  Google Scholar 

  2. Zhu, G., Kingsford, O.J., Yi, Y., and Wong, K.-Y., J. Electrochem. Soc., 2019, vol. 166, p. H205.

    Article  CAS  Google Scholar 

  3. Zor, E., Bingol, H., and Ersoz, M., TrAC, Trends Anal. Chem., 2019, vol. 121.

  4. Srivastava, A.K., Upadhyay, S.S., Rawool, C.R., Punde, N.S., and Rajpurohit, A.S., Curr. Anal. Chem., 2019, vol. 15, p. 249.

    Article  CAS  Google Scholar 

  5. Maistrenko, V.N., Sidel’nikov, A.V., and Zil’berg, R.A., J. Anal. Chem. 2018, vol. 73, no. 1, p. 1.

    Article  CAS  Google Scholar 

  6. Lenik, J., Curr. Med. Chem., 2017, vol. 24, p. 2359.

    Article  CAS  PubMed  Google Scholar 

  7. Niu, X., Mo, Z., Yang, X., Sun, M., Zhao, P., Li, Z., Ouyang, M., Liu, Z., Gao, H., Guo, R., and Liu, N., Microchim. Acta, 2018, vol. 185, p. 328.

    Article  CAS  Google Scholar 

  8. Wang, S.-Y., Li, L., Xiao, Y., and Wan, Y., TrAC, Trends Anal. Chem., 2019, vol. 121, 115691.

    Article  CAS  Google Scholar 

  9. Quintana, C., Suárez, S., and Hernández, L., Sens. Actuators, B, 2010, vol. 149, p. 129.

    Article  CAS  Google Scholar 

  10. Dong, S.Q., Bi, Q., Qiao, C.D., Sun, Y.M., Zhang, X., Lu, X.Q., and Zhao, L., Talanta, 2017, vol. 173, p. 94.

    Article  CAS  PubMed  Google Scholar 

  11. Atta, N.F., Galal, A., and Ahmed, Y.M., J. Electrochem. Soc., 2019, vol. 166, p. B623.

    Article  CAS  Google Scholar 

  12. Zou, J. and Yu, J.G., Anal. Chim. Acta, 2019, vol. 1088, p. 35.

    Article  CAS  PubMed  Google Scholar 

  13. Bao, L., Dai, J., Yang, L., Ma, J., Tao, Y., Deng, L., and Kong, Y., J. Electrochem. Soc., 2015, vol. 162, p. H486.

    Article  CAS  Google Scholar 

  14. Wang, L., Gong, W., Wang, F., Yu, Z., and Chen, Z., Anal. Methods, 2016, vol. 8, p. 3481.

    Article  CAS  Google Scholar 

  15. Tiwari, M.P. and Prasad, A., Anal. Chim. Acta, 2015, vol. 853, p. 1.

    Article  CAS  PubMed  Google Scholar 

  16. Canfarotta, F., Rapini, R., and Piletsky, S., Curr. Opin. Electrochem., 2018, vol. 7, p. 146.

    Article  CAS  Google Scholar 

  17. Radi, A.-E., Wahdan, T., and El-Basiony, A., Curr. Anal. Chem., 2019, vol. 15, p. 219.

    Article  CAS  Google Scholar 

  18. Liang, H.-J., Ling, T.-R., Rick, J.F., and Chou, T.-C., Anal. Chim. Acta, 2005, vol. 542, p. 83.

    Article  CAS  Google Scholar 

  19. Zhao, Q., Yang, J., Zhang, J., Wu, D., Tao, Y., and Kong, Y., Anal. Chem., 2019, vol. 91, p. 12546.

    Article  CAS  PubMed  Google Scholar 

  20. Hembury, G.A., Borovkov, V.V., and Inoue, Y., Chem. Rev., 2008, vol. 108, p. 1.

    Article  CAS  PubMed  Google Scholar 

  21. Liu, M.H., Zhang, L., and Wang, T.Y., Chem. Rev., 2015, vol. 115, p. 7304.

    Article  CAS  PubMed  Google Scholar 

  22. Mandler, D., Curr. Opin. Electrochem., 2018, vol. 7, p. 42.

    Article  CAS  Google Scholar 

  23. Tao, Y., Gu, X., Yang, B., Deng, L., Bao, L., Kong, Y., Chu, F., and Qin, Y., Anal. Chem., 2017, vol. 89, p. 1900.

    Article  CAS  PubMed  Google Scholar 

  24. Tao, Y., Chu, F., Gu, X., Kong, Y., Lv, Y., and Deng, L., Sens. Actuators, B, 2018, vol. 255, p. 255.

    Article  CAS  Google Scholar 

  25. Viedma, C., Phys. Rev. Lett., 2005, vol. 94, 065504.

    Article  PubMed  CAS  Google Scholar 

  26. Wang, Y., Xu, J., Wang, Y.W., and Chen, H.Y., Chem. Soc. Rev., 2013, vol. 42, p. 2930.

    Article  CAS  PubMed  Google Scholar 

  27. Wang, Y., Zhou, D., Li, H., Li, R., Zhong, Y., Xuan Sun, and Xun Sun, J. Mater. Chem. C, 2014, vol. 2, p. 6402.

    Article  CAS  Google Scholar 

  28. Purcell-Milton, F., McKenna, R., Brennan, L.J., Cullen, C.P., Guillemeney, L., Tepliakov, N.V., Baimuratov, A.S., Rukhlenko, I.D., Perova, T.S., Duesberg, G.S., Baranov, A.V., Fedorov, A.V., and Gun’ko, Y.K., ACS Nano, 2018, vol. 12, p. 954.

    Article  CAS  PubMed  Google Scholar 

  29. Gus’kov, V.Y., Sukhareva, D.A., Gainullina, Y.Y., Hamitov, E.M., Galkin, Y.G., and Maistrenko, V.N., Supramol. Chem., 2018, vol. 30, p. 940.

    Article  CAS  Google Scholar 

  30. Plass, K.E., Grzesiak, A.L., and Matzger, A.J., Acc. Chem. Res., 2007, vol. 40, p. 287.

    Article  CAS  PubMed  Google Scholar 

  31. Zilberg, R.A., Maistrenko, V.N., Zagitova, L.R., Guskov, V.Y., and Dubrovsky, D.I., J. Electroanal. Chem., 2020, vol. 861.

  32. Guo, D., Ran, P., Chen, C., Chen, Y., Xuan, C., and Fu, Y., J. Electrochem. Soc., 2015, vol. 162, p. B354.

    Article  CAS  Google Scholar 

  33. Niu, X., Mo, Z., Gao, H., Wang, R., Li, Z., Meng, S., and Guo, R., J. Solid State Electrochem., 2018, vol. 22, p. 973.

    Article  CAS  Google Scholar 

  34. Mo, Z., Niu, X., Gao, H., Li, Z., Meng, S., and Guo, R., J. Solid State Electrochem., 2018, vol. 22, p. 2405.

    Article  CAS  Google Scholar 

  35. Niu, X., Yang, X., Mo, Z., Guo, R., Liu, N., Zhao, P., and Liu, Z., Bioelectrochemistry, 2019, vol. 129, p. 189.

    Article  CAS  PubMed  Google Scholar 

  36. Yang, X., Niu, X., Mo, Z., Guo, R., Liu, N., Zhao, P., and Liu, Z., Microchim. Acta, 2019, vol. 186, p. 333.

    Article  CAS  Google Scholar 

  37. Nie, R., Bo, X., Wang, H., Zeng, L., and Guo, L., Electrochem. Commun., 2013, vol. 27, p. 112.

    Article  CAS  Google Scholar 

  38. Pang, T.T., Zhang, X.Y., and Xue, Y.B., J. Inclusion Phenom. Macrocyclic Chem., 2017, vol. 87, p. 275.

    Article  CAS  Google Scholar 

  39. Chen, L., Liu, S., Chang, F., Xie, X., and Zhu, Z., Electroanalysis, 2017, vol. 29, p. 955.

    Article  CAS  Google Scholar 

  40. Zil’berg, R.A., Maistrenko, V.N., Kabirova, L.R., Gus’kov, V.Yu., Khamitov, E.M., and Dubrovskii, D.I., J. Anal. Chem., 2020, vol. 75, p. 101.

    Article  Google Scholar 

  41. Zilberg, R.A., Maistrenko, V.N., Kabirova, L.R., and Dubrovsky, D.I., Anal. Methods, 2018, vol. 10, p. 1886.

    Article  CAS  Google Scholar 

  42. Zilberg, R.A., Sidelnikov, A.V., Maistrenko, V.N., Yarkaeva, Y.A., Khamitov, E.M., Kornilov, V.M., and Maksutova, E.I., Electroanalysis, 2018, vol. 30, p. 619.

    Article  CAS  Google Scholar 

  43. Krayukhina, M.A., Samoilova, N.A., and Yamskov, I.A., Russ. Chem. Rev., 2008, vol. 77, p. 854.

    Article  CAS  Google Scholar 

  44. Racine, L., Texier, I., and Auzely-Velty, R., Polym. Int., 2017, vol. 66, p. 981.

    Article  CAS  Google Scholar 

  45. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2004.

    Google Scholar 

  46. Ghoreishi, S.M., Behpour, M., Jafari, N., and Golestaneh, M., J. Chin. Chem. Soc., 2012, vol. 59, p. 1015.

    Article  CAS  Google Scholar 

  47. D’Souza, O.J., Mascarenhas, R.J., Satpati, A.K., Namboothiri, I.N.N., Detriche, S., Mekhalif, Z., and Delhalle, J., RSC Adv., 2015, vol. 5, p. 91472.

    Article  CAS  Google Scholar 

  48. Karami, Z. and Sheikhshoaie, I., Anal. Bioanal. Electrochem., 2017, vol. 9, p. 834.

    CAS  Google Scholar 

  49. Shi, X., Wang, Y., Peng, C., Zhang, Z., Chen, J., Zhou, X., and Jiang, H., Electrochim. Acta, 2017, vol. 241, p. 386.

    Article  CAS  Google Scholar 

  50. Guo, Y., Yao, R., Wang, Z., Zhang, Y., Cui, M., Zhao, Q., and Wang, H., J. Solid State Electrochem., 2018, vol. 22, p. 41.

    Article  CAS  Google Scholar 

  51. Brereton, R.G., Chemometrics: Data Analysis for the Laboratory and Chemical Plant, Chichester: Wiley, 2003.

    Book  Google Scholar 

  52. Pomerantsev, A.L., Chemometrics in Excel, New York: Wiley, 2014.

    Book  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-73-10079.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Yarkaeva.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarkaeva, Y.A., Dubrovskii, D.I., Zil’berg, R.A. et al. A Voltammetric Sensor Based on a 3,4,9,10-Perylenetetracarboxylic Acid Composite for the Recognition and Determination of Tyrosine Enantiomers. J Anal Chem 75, 1537–1545 (2020). https://doi.org/10.1134/S1061934820110143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934820110143

Keywords:

Navigation