Skip to main content
Log in

Combination of Instrumental Neutron Activation Analysis with X-Ray Fluorescence Spectrometry for the Determination of Rare-Earth Elements in Geological Samples

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A combined use of comparator instrumental neutron activation analysis (INAA) including the internal standard method and energy-dispersive X-ray fluorescence spectrometry (EDXRF) for the determination of 14 rare-earth elements (REE) in geological samples at the level of their clarke concentrations is studied. A rapid analysis with the determination of light REE from La to Sm with Fe as an internal standard is performed using a portable RLP-21T energy-dispersive X-ray fluorescence spectrometer (Republic of Kazakhstan) with the excitation of K-series lines of characteristic radiation of a sample with a low-power (10 W) X-ray tube with a tungsten anode and the maximum voltage 70 kV. The neutron activation analysis of other REE was performed using a WWR-K nuclear research reactor. Based on the analysis of ten certified reference materials of geological samples, a possibility of using a complex of INAA and EDXRF methods for routine qualitative analyses of REE in the III accuracy class in accordance with the branch standard OST41-08-212-04 is shown. Examples of using a complex of INAA and EDXRF methods for solving geochemical problems and determining REE in out-of-balance ores of the Kundybay deposit are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Aksentov, K.I. and Sattarova, V.V., Geol. Geofiz., 2016, vol. 57, no. 7, p. 1323.

    CAS  Google Scholar 

  2. Matveeva, S.S., Dokl. Ross. Akad. Nauk, 1996, vol. 351, no. 2, p. 249.

    Google Scholar 

  3. Bobrov, V.A. and Shcherbakov, Yu.G., Redkozemel’nye elementy v magmaticheskikh porodakh: Sbornik nauchnykh trudov (Rare Earth Elements in Igneous Rocks: Collection of Scientific Papers) Novosibirsk: Inst. Geol. Geofiz., Sib. Oid., Akad. Nauk SSSR, 1988.

  4. El-Taher, A., J. Radiat. Nucl. Appl., 2018, vol. 3, no. 1, p. 53.

    Article  Google Scholar 

  5. Gorbatenko, A.A. and Revina, E.I., Inorg. Mater., 2015, vol. 51, no. 14, p. 1375.

    Article  CAS  Google Scholar 

  6. Zawisza, B., Pytlakowska, K., Feist, B., Polowniak, M., Kita, A., and Sitko, R., J. Anal. At. Spectrom., 2011, vol. 26, p. 2373.

    Article  CAS  Google Scholar 

  7. Schramm, R., Phys. Sci. Rev., 2016, vol. 1, no. 9. https://doi.org/10.1515/psr-2016-0061

  8. Papaefthymiou, H. and Papatheodorou, G., J. Radioanal. Nucl. Chem., 2011, vol. 289, p. 679.

    Article  CAS  Google Scholar 

  9. Stosch, H.-G., Phys. Sci. Rev., 2016, vol. 1, no. 8. https://doi.org/10.1515/psr-2016-0062

  10. Damascena, K.F.R., Santos Amaral, R., Santos Junior, J.A., Genezini, F.A., Silva, A.A., and Romulo, S.C.M., J. Radioanal. Nucl. Chem., 2015, vol. 304, p. 1053.

    Article  CAS  Google Scholar 

  11. Baccolo, G., Clemenza, M., and Delmonte, B., J. Radioanal. Nucl. Chem., 2015, vol. 306, p. 429.

    Article  CAS  Google Scholar 

  12. Capannesi, G., Rosada, A., Manigrasso, M., and Avino, P., J. Radioanal. Nucl. Chem., 2012, vol. 291, p. 163.

    Article  CAS  Google Scholar 

  13. El-Taher, A., Appl. Radiat. Isotopes, 2010, vol. 68, no. 9, p. 1859.

    Article  CAS  Google Scholar 

  14. Rezaee, Kh., Saion, E.B., and Khalik Wood, A., J. Radioanal. Nucl. Chem., 2010, vol. 283, p. 823.

    Article  CAS  Google Scholar 

  15. Watanabe, K. and Suzuki, M., J. Radioanal. Nucl. Chem., 2009, vol. 279, p. 459.

    Article  CAS  Google Scholar 

  16. Ravisankar, R., Manikandan, E., Dheenathayalu, M., Jogeswara Rao, B., Seshadreesan, N.P., and Nair, K.G.M., Nucl. Instrum. Methods Phys. Res.,Sect. B, 2006, vol. 251, p. 496.

    CAS  Google Scholar 

  17. De Corte, F., J. Radioanal. Nucl. Chem., 2001, vol. 248, no. 1, p. 13.

    Article  CAS  Google Scholar 

  18. Lin, X. and Henkelmann, R., Anal. Bioanal. Chem., 2004, vol. 379, p. 210.

    Article  CAS  Google Scholar 

  19. Shinde, A.D., Acharya, R., and Reddy, A.V.R., J. Radioanal. Nucl. Chem., 2014, vol. 299, p. 1287.

    Article  CAS  Google Scholar 

  20. Tiwari, S., Nair, A.G.C., Acharya, R., Reddy, A.V.R., and Goswami, A., J. Nucl. Radioch. Sci., 2007, vol. 8, p. 25.

    Article  CAS  Google Scholar 

  21. Knyazev, B.B., Gorlachev, I.D., and Berezovskii, D.A., Izv. Nats. Akad. Nauk Resp. Kazakhstan, Ser. Fiz.-Mat., 2008, vol. 2, p. 73.

    Google Scholar 

  22. Silachyov, I., J. Radioanal. Nucl. Chem., 2016, vol. 310, p. 573.

    Article  CAS  Google Scholar 

  23. Karivai, A., Zuzaan, P., and Gustova, V., Phys. Part. Nuclei Lett., 2011, vol. 6, no. 8, p. 576.

    Article  Google Scholar 

  24. Zuzaan, P., Gansukh, N., and Bolortuya, D., X-Ray Spectrom., 2010, vol. 39, no. 1, p. 52.

    Article  CAS  Google Scholar 

  25. Zinin, D.S., Bushuev, N.N., and Kuznetsov, V.V., J. Anal. Chem., 2017, vol. 72, no. 3, p. 279.

    Article  CAS  Google Scholar 

  26. Suvorova, D., Khudonogova, E., and Revenko, A., X‑Ray Spectrom., 2017, vol. 46, no. 3, p. 200.

    Article  CAS  Google Scholar 

  27. Sitko, R., Zawisza, B., and Czaja, M., Anal. At. Spectrom., 2005, vol. 20, no. 8, p. 741.

    Article  CAS  Google Scholar 

  28. Orescanin, V., Mikelic, L., Roje, V., and Lulie, S., Anal. Chim. Acta, 2006, vol. 570, no. 2, p. 277.

    Article  CAS  Google Scholar 

  29. Pushkin, S.G. and Mikhailov, V.A., Komparatornyi neitronno-aktivatsionnyi analiz. Izuchenie atmosfernykh aerozolei (Comparator Neutron Activation Analysis: Study of Atmospheric Aerosols), Novosibirsk: Nauka, 1989.

  30. Zaitsev, E.I., Sotskov, Yu.P., and Reznikov, R.S., Neitronno-aktivatsionnyi analiz gornykh porod na redkie elementy (Neutron Activation Analysis of Rocks for Rare Elements), Moscow: Nedra, 1978.

  31. Silachev, I.Yu., Izv. Nats. Akad. Nauk Resp. Kazakhstan,Ser. Khim. Tekhnol., 2017, vol. 426, no. 6, p. 103.

    Google Scholar 

  32. OST (Branch Standard) 41-08-212-04: Quality Management of Analytical Work. Error Standards in Determining the Chemical Composition of Mineral Raw Materials and Classification of Laboratory Analysis Methods according to the Accuracy of the Results, Moscow: Vseross. Inst. Miner. Syr’ya, 2004.

Download references

Funding

The work was performed within the Program of Targeted Support of the Ministry of Education and Science of the Republic of Kazakhstan (BR05236400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Silachyov.

Additional information

Translated by E. Rykova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silachyov, I.Y. Combination of Instrumental Neutron Activation Analysis with X-Ray Fluorescence Spectrometry for the Determination of Rare-Earth Elements in Geological Samples. J Anal Chem 75, 878–889 (2020). https://doi.org/10.1134/S106193482007014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106193482007014X

Keywords:

Navigation