Skip to main content
Log in

Use of Carbon Materials of Different Nature in Determining Metal Concentrations in Carbon Nanotubes by X-Ray Fluorescence Spectrometry

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A possibility of studying carbon nanotubes by X-ray fluorescence spectrometry using reference samples prepared from carbon materials more accessible than purified carbon nanotubes (carbon black, Sibunit, and activated carbon) is considered. The optimal state of the sample for analysis (powder or tablet with an inert filler) is determined. Most batches of purified carbon nanotubes (CNTs) contain significant amounts of impurities of the determined metal catalysts, varying from batch to batch, which affects the accuracy and reproducibility of the results of analysis of CNTs. The use of other carbon materials, such as carbon black and activated carbon, for the preparation of reference samples ensures obtaining reliable results even with relatively high degrees of dilution with an inert filler (cellulose) during tablet formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Hong, S. and Myung, S., Nat. Nanotechnol., 2007, vol. 2, p. 208.

    Article  Google Scholar 

  2. Kazakova, M.A., Kuznetsov, V.L., Semikolenova, N.V., Moseenkov, S.I., Krasnikov, D.V., Matsko, M.A., Ishchenko, A.V., Zakharov, V.A., Romanenko, A.I., Anikeeva, O.B., Tkachev, E.N., Suslyaev, V.I., Zhuravlev, V.A., and Dorozkin, K.V., Phys. Status Solidi B, 2014, vol. 251, no. 12, p. 2437.

    Article  CAS  Google Scholar 

  3. Kuznetsov, V.L., Suslyaev, V.I., Dorofeev, I.O., Kazakova, M.A., Moseenkov, S.I., Smirnova, T.E., and Krasnikov, D.V., Phys. Status Solidi B, 2015, vol. 252, no. 11, p. 2519.

    Article  CAS  Google Scholar 

  4. Kazakova, M.A., Selyutin, A.G., Semikolenova, N.V., Ishchenko, A.V., Moseenkov, S.I., Matsko, M.A., Zakharov, V.A., and Kuznetsov, V.L., Compos. Sci. Technol., 2018, vol. 167, p. 148.

    Article  CAS  Google Scholar 

  5. Lin, Y., Taylor, S., Li, H., Fernando, K.A.S., Qu, L., Wang, W., Gu, L., Zhou, B., and Sun, Y.P., J. Mater. Chem., 2004, vol. 14, p. 527.

    Article  CAS  Google Scholar 

  6. Smart, S.K., Cassady, A.I., Lu, G.Q., and Martin, D.J., Carbon, 2006, vol. 44, p. 1034.

    Article  CAS  Google Scholar 

  7. Bokova-Sirosh, S.N., Kuznetsov, V.L., Romanenko, A.I., Kazakova, M.A., Krasnikov, D.V., Tkachev, E.N., Yuzyuk, Y.I., and Obraztsova, E.D., J. Nanophotonics, 2016, vol. 10, nos. 1–10, p. 012526.

  8. Ci, L.J., Zhao, Z.G., and Dai, J.B., Carbon, 2005, vol. 43, p. 883.

    Article  CAS  Google Scholar 

  9. Andreev, A.S., Krasnikov, D.V., Zaikovskii, V.I., Cherepanova, S.V., Kazakova, M.A., Lapina, O.B., and Kuznetsov, V.L., J. Catal., 2018, vol. 358, p. 62.

    Article  CAS  Google Scholar 

  10. Yahyazadeh, A. and Khoshandam, B., Results Phys., 2017, vol. 7, p. 3826.

    Article  Google Scholar 

  11. Kazakova, M.A., Kuznetsov, V.L., Bokova-Sirosh, S.N., Krasnikov, D.V., Golubtsov, G.V., Romanenko, A.I., Prosvirin, I.P., Ishchenko, A.V., Orekhov, A.S., Chuvilin, A.L., and Obraztsova, E.D., Phys. Status Solidi B, 2018, vol. 255, p. 1700260.

    Article  Google Scholar 

  12. Jourdain, V. and Bichara, C., Carbon, 2008, vol. 58, p. 2.

    Article  Google Scholar 

  13. Salernitano, E., Giorgi, L., Makris, T.D., Giorgi, R., Lisi, N., Contini, V., and Falconieri, M., Diamond Relat. Mater., 2007, vol. 16, p. 1565.

    Article  CAS  Google Scholar 

  14. Mahalingam, P., Parasuram, P., Maiyalagan, T., and Sundaram, S., J. Environ. Nanotechnol., 2012, vol. 1, p. 53.

    Google Scholar 

  15. Yuca, N., Camtakan, Z., and Karatepe, N., in Proc. SPIE, vol. 8814: Carbon Nanotubes, Graphene and Associated Devices VI, 2013, 881403. https://doi.org/10.1117/12.2023215

  16. Decker, J.E., Hight, WalkerA.R., Bosnick, K., Clifford, C.A., Dai, L., Fagan, J., Hooker, S., Kingston, C., Makar, J., Mansfield, E., Postel, M.T., Simard, B., Sturgeon, R., Wise, S., Vladar, A.E., Yang, L., and Zeisler, R., Metrologia, 2009, vol. 46, p. 682.

    Article  CAS  Google Scholar 

  17. Pang, S.K., Saxby, J.D., and Chatfield, S.P., J. Phys. Chem., 1993, vol. 97, no. 27, p. 6941.

    Article  CAS  Google Scholar 

  18. Yang, K.X., Kitto, M.E., Orsini, J.P., Swami, K., and Beach, S.E., J. Anal. At. Spectrom., 2010, vol. 25, p. 1290.

    Article  CAS  Google Scholar 

  19. Rinzler, A.G., Liu, J., Dai, H., Nikolaev, P., Huffman, C.B., Rodríguez-Macías, F.J., Boul, P.J., Lu, A.H., Heymann, D., Colbert, D.T., Lee, R.S., Fischer, J.E., Rao, A.M., Eklund, P.C., and Smayley, R.E., Appl. Phys. A, 1998, vol. 67, p. 29.

    Article  CAS  Google Scholar 

  20. Kučera, J., Bennett, J.W., Oflaz, R., Paul, R.L., Fernandes, E.A., Kubešová, M., Bacchi, M.A., Stopic, A.J., Sturgeon, R.E., and Grinberg, P., Anal. Chem., 2015, vol. 87, no. 7, p. 3699.

    Article  Google Scholar 

  21. Cavness, B., Heimbecker, J., Velasquez, J., and Williams, S., Radiat. Phys. Chem., 2012, vol. 81, p. 131.

    Article  CAS  Google Scholar 

  22. Losev, N.F., Kolichestvennyi rentgeno-spektral’nyi fluorestsentnyi analiz (Quantitative X-Ray Spectral Fluorescence Analysis), Moscow: Nauka, 1969.

  23. Haftka, F.I., Rev. Univers. Mines, Metall., Mec., 1958, vol. 15, p. 549.

    Google Scholar 

  24. Klockenkämper, R., Total-Reflection X-Ray Fluorescence Analysis, Chichester: Wiley, 1997.

    Google Scholar 

  25. Hata, K., Futaba, D., Mizuno, K., Namai, T., Yumura, M., and Iijima, S., Science, 2004, vol. 306, p. 1362.

    Article  CAS  Google Scholar 

  26. Surovikin, V.F., Plaxin, G.V., Likholobov, V.A., and Tiunova, L.J., US Patent 4978649, 1990.

  27. Kazakova, M.A., Andreev, A.S., Selyutin, A.G., Ishchenko, A.V., Shuvaev, A.V., Kuznetsov, V.L., Lapina, O.B., and D’espinose de Lacaillerie, J.-B., Appl. Surf. Sci., 2018, vol. 456, p. 657.

    Article  CAS  Google Scholar 

  28. Elumeeva, K., Kazakova, M.A., Morales, D.-M., Medina, D., Selyutin, A., Golubtsov, G., Ivanov, Yu., Kuznetzov, V., Chuvilin, A., Antoni, H., Muhler, M., Schuhmann, W., and Masa, J., ChemSusChem, 2018, vol. 11, p. 1204.

    Article  CAS  Google Scholar 

  29. Biro, L.P., Khanh, N.Q., Vertesy, Z., Horvath, Z.E., Osvath, Z., Koos, A., Gyulai, J., Kocsonya, A., Konya, A., Zhang, X.B., Van Tendeloo, G., Fonseca, A., and Nagy, J.B., Mater. Sci. Eng., C, 2002, vol. 19, p. 9.

    Article  Google Scholar 

  30. Kuznetsov, V.L., Elumeeva, K.V., Ishchenko, A.V., Beylina, N.Yu., Stepashkin, A.A., Plyasova, L.M., Molina, I.Yu., Rpmanenko, A.I., Anikeeva, O.V., and Tkachev, E.N., Phys. Status Solidi B, 2010, vol. 247, nos. 11–12, p. 2695.

    Article  CAS  Google Scholar 

Download references

Funding

The samples of MWCNTs were obtained with financial support from the Russian Science Foundation as part of research project no. 19-73-00069.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zhdanov.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhdanov, A.A., Kazakova, M.A. Use of Carbon Materials of Different Nature in Determining Metal Concentrations in Carbon Nanotubes by X-Ray Fluorescence Spectrometry. J Anal Chem 75, 312–319 (2020). https://doi.org/10.1134/S106193482003017X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106193482003017X

Keywords:

Navigation