Skip to main content
Log in

Analytical Potentials for the Efficient Simulation of Planar and Axisymmetric Ion Mirrors

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we obtained analytical equations for electrostatic fields of two-dimensional planar and axially symmetric mirrors with piecewise-constant and piecewise-linear potentials on electrode surfaces located symmetrically in parallel planes or on a cylindrical surface, in particular, in the presence of an additional end electrode. The results can be used for the efficient optimization of aberration properties of time-of-flight mass analyzers and electrostatiс ion traps with gridless ion mirrors based on both standard planar or ring-type electrodes with finite gaps between them and PCB plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Yavor, M.I., Pomozov, T.V., Kirillov, S.N., et al., Int. J. Mass Spectrom., 2018, vol. 426, p. 1

    Article  CAS  Google Scholar 

  2. Yavor, M.I., Optics of Charged Particle Analyzers, Amsterdam: Elsevier, 2009.

    Google Scholar 

  3. Berz, M., Part. Accel., 1989, vol. 24, p. 109.

    CAS  Google Scholar 

  4. Berz, M., Nucl. Instrum. Methods Phys. Res.,Sect. A, 1990, vol. 298, p. 426.

    Google Scholar 

  5. Makino, K. and Berz, M., Proc. SPIE, 1997, vol. 3155, p. 221.

    Article  CAS  Google Scholar 

  6. Berz, M., Modern Map Methods in Particle Beam Physics, San Diego, CA: Academic, 1999.

    Google Scholar 

  7. Monastyrskiy, M.A., Doctoral (Phys.–Math.) Disseration, Moscow: Inst. Gen. Phys., Russ. Acad. Sci., 1992.

    Google Scholar 

  8. Greenfield, D. and Monastyrskiy, M., Selected Problems of Computational Charged Particle Optics, Ser. Advances in Imaging and Electron Physics, vol. 155, Hawkes, P., Ed., Amsterdam: Elsevier, 2009.

    Google Scholar 

  9. Lavrent’ev, M.A. and Shabat, B.V., Metody teorii funktsii kompleksnogo peremennogo (Methods of the Theory of Functions of a Complex Variable), Moscow: Nauka, 1973.

  10. Pomozov, T.V., Verenchikov, A.N., and Yavor, M.I., Nauchn. Priborostr., 2015, vol. 25, no. 3, p. 10.

    Article  Google Scholar 

  11. Yavor, M.I. and Verenchikov, A.N., Nauchn. Priborostr., 2004, vol. 14, no. 2, p. 38.

    CAS  Google Scholar 

  12. Hasin, Yu.I., Verenchikov, A.N., Gavrik, M.A., et al., Nauchn. Priborostr., 2004, vol. 14, no. 2, p. 59.

    Google Scholar 

  13. Yavor, M.I. and Verenchikov, A.N., Sci. Comput. Instrum., 2004, vol. 14, p. 24.

    Google Scholar 

  14. Verentchikov, A.N., Yavor, M.I., Mitchell, J.C., and Artaev, V., EU Patent 1665326, 2010.

  15. Artaev, V., Yavor, M., Pomozov, T., et al., J. Am. Soc. Mass Spectrom., 2013, vol. 24, no. 1 (suppl.), p. 1.

    Google Scholar 

  16. Pomozov, T.V., Yavor, M.I., and Verentchikov, A.N., Tech. Phys., 2012, vol. 57, no. 4, p. 550.

    Article  CAS  Google Scholar 

  17. Pomozov, T.V. and Yavor, M.I., Nauchn. Priborostr., 2011, vol. 21, no. 2, p. 90.

    Google Scholar 

  18. Verentchikov, A.N., Yavor, M.I., Hasin, Yu.I., et al., Tech. Phys., 2005, vol. 50, no. 1, p. 73.

    Article  CAS  Google Scholar 

  19. Verentchikov, A.N., Yavor, M.I., Hasin, Yu.I., et al., Tech. Phys., 2005, vol. 50, N1, p. 82.

    Article  CAS  Google Scholar 

  20. Verentchikov, A.N., Yavor, M.I., Hasin, Yu.I., et al., Mass-Spektrom., 2005, vol. 2, no. 1, p. 11.

    CAS  Google Scholar 

  21. Hasin, Yu.I., Verenchikov, A.N., Gavrik, M.A., et al., Nauchn. Priborostr., 2005, vol. 15, no. 2, p. 112.

    Google Scholar 

  22. Verentchikov, A.N., Yavor, M.I., Mitchell, J.C., and Artaev, V., US Patent 7385187, 2008.

  23. Verenchikov, A.N., Yavor, M., and Pomozov, T.V., US Patent 9396922, 2016.

  24. Geissel, H., Winfield, J.S., Dickel, T., et al., Microsc. Microanal., 2015, vol. 21, no. S4, p. 160.

    Article  Google Scholar 

  25. Geissel, H., Weick, H., Winkler, M., et al., Nucl. Instrum. Methods Phys. Res.,Sect. B, 2006, vol. 247, no. 2, p. 368.

    CAS  Google Scholar 

  26. Plaß, W.R., Dickel, T., Andres, S.A.S., et al., Phys. Scr., T, 2015, vol. 2015, no. 166, p. 014069.

    Google Scholar 

  27. Yavor, M.I., Plaß, W.R., Dickel, T., et al., Int. J. Mass Spectrom., 2015, vols. 381–382, no. 1, p. 1.

    Article  Google Scholar 

  28. Dickel, T., Plaß, W.R., Becker, A., et al., Nucl. Instrum. Methods Phys. Res.,Sect. A, 2015, vol. 777, p. 172.

    CAS  Google Scholar 

  29. Jesch, C., Dickel, T., Plaß, W.R., et al., Hyperfine Interact., 2015, vol. 235, nos. 1–3, p. 97.

    Article  CAS  Google Scholar 

  30. Wollnik, H., Casares, A., Radford, D., et al., Nucl. Instrum. Methods Phys. Res.,Sect. A, 2004, vol. 519, nos. 1–2, p. 373.

    CAS  Google Scholar 

  31. Wollnik, H. and Casares, A., Int. J. Mass Spectrom., 2003, vol. 227, p. 217.

    Article  CAS  Google Scholar 

  32. Wolf, R.N., Marx, G., Rosenbusch, M., et al., Int. J. Mass Spectrom., 2012, vol. 313, p. 8.

    Article  CAS  Google Scholar 

  33. Wikipedia: Catalan’s constant. https://en.wikipedia.org/wiki/Catalan%27s_constant.

  34. Wolfram Mathematica. http://wolfram.com/mathematica/. Accesssed April 3, 2018.

  35. Goncharov, V.L., Teoriya interpolirovaniya i priblizheniya funktcii (The Theory of Interpolation and Approximation of Functions), Moscow: Gostekhizdat, 1931.

  36. Achieser, N.I., Theory of Approximation, New York: Dover, 1992.

    Google Scholar 

  37. Timan, A.F., Theory of Approximation of Functions of a Real Variable, Ser. International Series of Monographs on Pure and Applied Mathematics, Oxford: Pergamon, 1963.

  38. Ibragimov, I.I., Metody interpolyatsii funktsii i nekotorye ikh primeneniya (Methods of Interpolation of Functions and Some of Their Applications), Moscow: Nauka, 1971.

  39. Berdnikov, A.S. and Chmelík, J., Optik (Munich, Ger.), 1996, vol. 102, no. 1, p. 13.

  40. Watson, G.N., A Treatise on the Theory of Bessel Functions, Cambridge: Cambridge Univ. Press, 1966, 2nd ed.

    Google Scholar 

  41. Hawkes, P. and Kasper, E., Principles of Electron Optics, vol. 2: Applied Geometrical Optics, New York: Academic, 2017, 2nd ed.

    Google Scholar 

  42. El-Kareth, A.B. and El-Kareth, J.C.J., Electron Beam Lenses and Optics, New York: Academic, 1970, vol. 1.

    Google Scholar 

  43. Berger, C., Lambinet, M., and Baril, M., in Advances in Mass Spectrometry, Quayle, A., Ed., London: Heyden, 1980, vol. 8B, p. 1739.

  44. Paint.NET. https://www.getpaint.net. Accessed April 3, 2018.

Download references

ACKNOWLEDGMENTS

Wolfram Mathematica (ver. 11) software was used for performing calculations and creating figures [34]. Paint.NET (ver. 4) graphics editor [44] was used for editing the figures. The authors apologize to the readers for using the notation arctan, sinh, cosh, tanh, log, and others, which are characteristic of European typographic traditions, instead of the notation accepted in Russian-language mathematical texts. The authors are grateful to the referees for useful comments that have improved the presentation of the article.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. AAAA-A17-117042410146-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Yavor.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berdnikov, A.S., Verentchikov, A.N., Kirillov, S.N. et al. Analytical Potentials for the Efficient Simulation of Planar and Axisymmetric Ion Mirrors. J Anal Chem 74, 1437–1446 (2019). https://doi.org/10.1134/S1061934819140041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934819140041

Keywords:

Navigation