Skip to main content
Log in

Study of the Aquatic Chlorination of UV Filter Avobenzone in the Presence of Inorganic Salts by Gas Chromatography–High-Resolution Mass Spectrometry

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Disinfection is an essential technological stage in water treatment. It is used not only for potable water but also for, e. g., swimming pool water. Water chlorination is the most common method for eliminating microorganisms today. However, active chlorine reacting with natural and anthropogenic compounds dissolved in water gives rise to the formation of numerous compounds that may be hazardous to human health. The assortment of anthropogenic contaminants grows every year; UV filters are well represented among them. Since recently, they are referred to as ecotoxicants, while their application to skin protection becomes more and more popular all over the world. Over 30 compounds, including numerous halogenated derivatives forming in the aquatic chlorination of a popular UV filter avobenzone in the presence of inorganic salts of iron and copper, as well as bromides and iodides, were identified by gas-chromatography–high-resolution mass spectrometry. The study demonstrated the notable variation of the qualitative and quantitative composition of the reaction products depending on the added salt. It is worth mentioning the formation of brominated and iodinated products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ramos, S., Homem, V., Alves, A., et al., Sci. Total Environ., 2015, vol. 526, p. 278.

    Article  CAS  Google Scholar 

  2. Kotnik, K., Kosjek, T., Žegura, B., et al., Chemosphere, 2016, vol. 147, p. 114.

    Article  CAS  Google Scholar 

  3. Díaz-Cruz, M.S., Llorca, M., and Barceló, D., TrAC,Trends Anal. Chem., 2008, vol. 27, no. 10, p. 873.

  4. Nohynek, G.J. and Schaefer, H., Regul. Toxicol. Pharmacol., 2001, vol. 33, no. 3, p. 285.

    Article  CAS  Google Scholar 

  5. Vione, D., Caringella, R., de Laurentiis, E., et al., Sci. Total Environ., 2013, vol. 463, p. 243.

    Article  Google Scholar 

  6. Liu, Y.S., Ying, G.G., Shareef, A., et al., Environ. Chem., 2011, vol. 8, no. 6, p. 581.

    Article  CAS  Google Scholar 

  7. Ahmed, M.B., Johir, M.A.H., Zhou, J.L., et al., Curr. Opin. Green Sustainable Chem., 2017, vol. 6, p. 85.

    Article  Google Scholar 

  8. Mazur, D., Detenchuk, E., Studenkina, A., et al., Abstracts of Papers, 19th European Meeting on Environmental Chemistry, Clermont-Ferrand, France, 2018.

  9. Richardson, S.D. and Temes, T.A., Anal. Chem., 2018, vol. 90, no. 1, p. 398.

    Article  CAS  Google Scholar 

  10. Tsui, M.M.P., Lam, J.C.W., Ng, T.Y., et al., Environ. Sci. Technol., 2017, vol. 51, no. 8, p. 4182.

    Article  CAS  Google Scholar 

  11. LaKind, J.S., Richardson, S.D., and Blount, B.C., Environ. Sci. Technol., 2010, vol. 44, no. 9, p. 3205.

    Article  CAS  Google Scholar 

  12. Chowdhury, S., Alhooshani, K., and Karanfil, T., Water Res., 2014, vol. 53, p. 68.

    Article  CAS  Google Scholar 

  13. Richardson, S.D., Plewa, M.J., Wagner, E.D., et al., Mutat. Res., 2007, vol. 636, nos. 1–3, p. 178.

    Article  CAS  Google Scholar 

  14. Weisel, C.P., Richardson, S.D., Nemery, B., et al., Environ. Health Perspect., 2009, vol. 117, no. 4, p. 500.

    Article  CAS  Google Scholar 

  15. Nohynek, G.J. and Schaefer, H., Regul. Toxicol. Pharmacol., 2001, vol. 33, no. 3, p. 285.

    Article  CAS  Google Scholar 

  16. Luccherra, M.C., Monaco, G., Valenzi, V.I., et al., Clin. Ter. (Rome), 2007, vol. 158, no. 6, p. 533.

    Google Scholar 

  17. Lebedev, A.T., Eur. J. Mass Spectrom., 2007, vol. 13, no. 1, p. 51.

    Article  CAS  Google Scholar 

  18. Hsu, C.H., Jeng, W.L., Chang, R.M., et al., Environ. Res., 2001, vol. 85, no. 2, p. 77.

    Article  CAS  Google Scholar 

  19. Wang, H., Liu, D.M., Zhao, Z.W., et al., J. Zhejiang Univ., Sci., A, 2010, vol. 11, no. 2, p. 143.

  20. Chugunova, A.A., Kralj, M.B., Polyakova, O.V., et al., J. Anal. Chem., 2017, vol. 72, no. 14, p. 1369.

    Article  CAS  Google Scholar 

  21. Fabricino, M. and Korshin, G.V., J. Hazard. Mater., 2009, vol. 168, nos. 2–3, p. 782.

    Article  Google Scholar 

  22. Lee, J., Ha, K.T., and Zoh, K.D., Sci. Total Environ., 2009, vol. 407, no. 6, p. 1990.

    Article  CAS  Google Scholar 

  23. Plewa, M.J., Simmons, J.E., Richardson, S.D., et al., Environ. Mol. Mutagen., 2010, vol. 51, nos. 8–9, p. 871.

    Article  CAS  Google Scholar 

  24. Plewa, M.J., Wagner, E.D., Richardson, S.D., et al., Environ. Sci. Technol., 2004, vol. 38, no. 18, p. 4713.

    Article  CAS  Google Scholar 

  25. The Encyclopedia of UV Filters., Shaath, N.A., Ed., Carol Stream: Allured, 2007.

    Google Scholar 

  26. Mturi, G.J. and Martincigh, B.S., J. Photochem. Photobiol., A, 2008, vol. 200, p. 410.

  27. Vallejo, J.J., Mesa, M., and Gallardo, M.C., Vitae, 2011, vol. 18, no. 1, p. 63.

    CAS  Google Scholar 

  28. Kalister, K., Dolenc, D., Sarakha, M., et al., J. Anal. Chem., 2016, vol. 71, no. 14, p. 1289.

    Article  CAS  Google Scholar 

  29. Trebše, P., Polyakova, O.V., Baranova, M., et al., Water Res., 2016, vol. 101, p. 95.

    Article  Google Scholar 

  30. Cheng Wang, Bavcon Kralj, M., Košmrlj, B., et al., Chemosphere, 2017, vol. 182, p. 238.

    Article  CAS  Google Scholar 

  31. Levedev, A.T., Shaydullina, G.M., Sinikova, et al., Water Res., 2004, vol. 38, no. 17, p. 3713.

    Article  Google Scholar 

  32. Grbović, G., Trebše, P., Dolenc, D., et al., J. Mass Spectrom., 2013, vol. 48, no. 11, p. 1232.

    Article  Google Scholar 

  33. Santos, A.J.M., Crista, D.M.A., Miranda, M.S., et al., Environ. Chem., 2013, vol. 10, no. 2, p. 127.

    Article  CAS  Google Scholar 

  34. Crista, D.M.A., Miranda, M.S., and Esteves da Silva, J.C.G., Environ. Technol., 2015, vol. 36, no. 10, p. 1319.

    Article  CAS  Google Scholar 

  35. Postigo, C., Richardson, S.D., and Barceló, D., J. Environ. Sci., 2017, vol. 58, p. 127.

    Article  Google Scholar 

  36. Gräbe, C., Berichte, 1871, vol. 4, p. 34.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The GC–MS analysis was performed using the equipment of the Center for Collective Use of the Scientific Equipment “Arktika” of the Northern (Arctic) Federal University (identifier RFMEFI59417X0013).

Funding

This work was supported by the Russian Science Foundation, project no. 17-13-01112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Detenchuk.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Detenchuk, E.A., Chen, J., Polyakova, O.V. et al. Study of the Aquatic Chlorination of UV Filter Avobenzone in the Presence of Inorganic Salts by Gas Chromatography–High-Resolution Mass Spectrometry. J Anal Chem 74, 1271–1276 (2019). https://doi.org/10.1134/S1061934819130069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934819130069

Keywords:

Navigation