Skip to main content
Log in

Peptide identification in “shotgun” proteomics using tandem mass spectrometry: Comparison of search engine algorithms

  • Articles
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

High-throughput proteomics technologies are gaining popularity in different areas of life sciences. One of the main objectives of proteomics is characterization of the proteins in biological samples using liquid chromatography/mass spectrometry analysis of the corresponding proteolytic peptide mixtures. Both the complexity and the scale of experimental data obtained even from a single experimental run require specialized bioinformatic tools for automated data mining. One of the most important tools is a so-called proteomics search engine used for identification of proteins present in a sample by comparing experimental and theoretical tandem mass spectra. The latter are generated for the proteolytic peptides derived from a protein database. Peptide identifications obtained with the search engine are then scored according to the probability of a correct peptide-spectrum match. The purpose of this work was to perform a comparison of different search algorithms using data acquired for complex protein mixtures, including both annotated protein standards and clinical samples. The comparison was performed for three popular search engines: commercially available Mascot, as well as open-source X!Tandem and OMSSA. It was shown that the search engine OMSSA identifies in general a smaller number of proteins, while X!Tandem and Mascot deliver similar performance. We found no compelling reasons for using the commercial search engine instead of its open source competitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aebersold, R. and Mann, M., Nature, 2003, vol. 422, no. 6928, p. 198.

    Article  CAS  Google Scholar 

  2. Perkins, D.N., Pappin, D.J., Creasy, D.M., et al., Electrophoresis, 1999, vol. 20, no. 18, p. 3551.

    Article  CAS  Google Scholar 

  3. Eng, J.K., McCormack, A.L., and Yates, J.R., J. Am. Soc. Mass Spectrom., 1994, vol. 5, no. 11, p. 976.

    Article  CAS  Google Scholar 

  4. Craig, R. and Beavis, R.C., Bioinformatics, 2004, vol. 20, no. 9, p. 1466.

    Article  CAS  Google Scholar 

  5. Craig, R. and Beavis, R.C., Rapid Commun. Mass Spectrom., 2003, vol. 17, no. 20, p. 2310.

    Article  CAS  Google Scholar 

  6. Geer, L.Y., Markey, S.P., Kowalak, J.A., et al., J. Proteome Res., 2004, vol. 3, no. 5, p. 958.

    Article  CAS  Google Scholar 

  7. Wenger, C.D. and Coon, J.J., J. Proteome Res., 2013, vol. 12, no. 3, p. 1377.

    Article  CAS  Google Scholar 

  8. Dorfer, V., Pichler, P., Stranzl, T., et al., J. Proteome Res., 2014, vol. 13, no. 8, p. 3679.

    Article  CAS  Google Scholar 

  9. Balgley, B.M., Laudeman, T., Yang, L., et al., Mol. Cell. Proteomics, 2007, vol. 6, no. 9, p. 1599.

    Article  CAS  Google Scholar 

  10. Chang, K.-Y. and Muddiman, D.C., BMC Genomics, 2011, vol. 12, no. 358.

    Google Scholar 

  11. Brosch, M., Swamy, S., Hubbard, T., and Choudhary, J., Mol. Cell. Proteomics, 2008, vol. 7, no. 5, p. 962.

    Article  CAS  Google Scholar 

  12. Balgley, B.M., Laudeman, T., Yang, L., Song, T., and Lee, C.S., Mol. Cell. Proteomics, 2007, vol. 6, no. 9, p. 1599.

    Article  CAS  Google Scholar 

  13. Howbert, J.J. and Noble, W.S., Mol. Cell. Proteomics, 2014, vol. 13, no. 9, p. 2467.

    Article  CAS  Google Scholar 

  14. Lin, M.S., Cherny, J.J., Fournier, C.T., Roth, S.J., Krizanc, D., and Weir, M.P., J. Proteome Res., 2014, vol. 13, no. 4, p. 1823.

    Article  CAS  Google Scholar 

  15. Kandasamy, K., Pandey, A., and Molina, H., Anal. Chem., 2009, vol. 81, no. 17, p. 7170.

    Article  CAS  Google Scholar 

  16. Tanner, S., Shu, H., Frank, A., Wang, L.C., Zandi, E., Mumby, M., Pevzner, P.A., and Bafna, V., Anal. Chem., 2005, vol. 77, no. 14, p. 4626.

    Article  CAS  Google Scholar 

  17. Eng, J.K., Jahan, T.A., and Hoopmann, M.R., Proteomics, 2013, vol. 13, no. 1, p. 22.

    Article  CAS  Google Scholar 

  18. Kim, S. and Pevzner, P.A., Nat. Commun., 2014, vol. 5, no. 5277.

    Article  CAS  Google Scholar 

  19. Ivanov, M.V., Levitsky, L.I., Lobas, A.A., et al., J. Proteome Res., 2014, vol. 13, no. 4, p. 1911.

    Article  CAS  Google Scholar 

  20. Elias, J. and Gygi, S., Nat. Methods, 2007, vol. 4, no. 3, p. 207.

    Article  CAS  Google Scholar 

  21. Ivanov, M.V., Levitsky, L.I., Tarasova, I.A., et al., Mass-Spektrometriya, 2014, vol. 11, no. 3, p. 179.

    Google Scholar 

  22. Goloborodko, A.A., Mayerhofer, C., Zubarev, A.R., et al., Rapid Commun. Mass Spectrom., 2010, vol. 24, no. 4, p. 454.

    Article  CAS  Google Scholar 

  23. Shteynberg, D., Deutsch, E.W., Lam, H., et al., Mol. Cell. Proteomics, 2011, vol. 10, no. 12, p. M111.007690.

    Google Scholar 

  24. Shteynberg, D. and Nesvizhskii, A., Mol. Cell. Proteomics, 2013, vol. 12, no. 9, p. 2383.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Gorshkov.

Additional information

Published in Mass-spektrometriya, 2015, Vol. 12, No. 1, pp. 39–45.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, M.V., Levitsky, L.I., Lobas, A.A. et al. Peptide identification in “shotgun” proteomics using tandem mass spectrometry: Comparison of search engine algorithms. J Anal Chem 70, 1614–1619 (2015). https://doi.org/10.1134/S1061934815140075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934815140075

Keywords

Navigation