Skip to main content
Log in

Analytical capabilities of surface-assisted laser desorption/ionization in the determination of low-molecular-weight volatile compounds

  • Feature Articles
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Main approaches to the determination of low-molecular-weight chemical compounds by surfaceassisted laser desorption/ionization (SALDI) are considered. Analytes are adsorbed from a gas phase on the surface of a specially prepared solid-state substrate. Then, the surface is exposed to pulse laser radiation, which leads to ionization and desorption of ions to be detected with a mass analyzer. The factors responsible for the efficiency of ionization are examined, the instrumental versions of SALDI are presented, and the metrological characteristics of this method are given. The high ionization efficiency of basic compounds, which is higher than the efficiency of traditional ionization methods by orders of magnitude, the mild conditions of ionization, the simplicity of performance, and the possibility of combinations with analyte separation systems characterize SALDI as an exceptionally promising method for the determination of low-molecular-weight volatile compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Posthumus, M.A., Kistemaker, P.G., Meuzelaar, H.L.C., and Ten Noever. de Brauw, M.C., Anal. Chem., 1978, vol. 50, no. 7, p. 985.

    Article  CAS  Google Scholar 

  2. Hardin, E.D. and Vestal, M.L., Anal. Chem., 1981, vol. 53, no. 9, p. 1492.

    Article  CAS  Google Scholar 

  3. Tanaka, K., Waki, H., Ido, Y., Akita, S., and Yoshida, Y., Yoshida, T., and Matsuo, T., Rapid Com- mun. Mass Spectrom., 1988, vol. 2, no. 8, p. 151.

    Article  CAS  Google Scholar 

  4. Karas, M., Bachmann, D., and Hillenkamp, F., Anal. Chem., 1985, vol. 57, no. 14, p. 2935.

    Article  CAS  Google Scholar 

  5. Sunner, J., Dratz, E., and Chen, Y.C., Anal. Chem., 1995, vol. 67, no. 23, p. 4335.

    Article  CAS  Google Scholar 

  6. Kraft, P., Alimpiev, S., Dratz, E., and Sunner, J., J. Am. Soc. Mass Spectrom., 1998, vol. 9, no. 9, p. 912.

    Article  CAS  Google Scholar 

  7. Kim, H.-J., Lee, J.-K., Park, S.-J., Ro, H.W., Yoo, D.Y., and Yoon, D.Y., Anal. Chem., 2000, vol. 72, no. 22, p. 5673.

    Article  CAS  Google Scholar 

  8. Alimpiev, S.S., Nikiforov, S.M., Karavanskii, V.A., and Sunner, J., J. Chem. Phys., 2001, vol. 115, no. 5, p. 1891.

    Article  CAS  Google Scholar 

  9. Wei, J., Buriak, J.M., and Siuzdak, G., Nature, 1999, vol. 399, no. 6733, p. 243.

    Article  CAS  Google Scholar 

  10. Murray, K.K., Boyd, R.K., Eberlin, M.N., Langley, G.J., Li, L., and Naito, Y., Pure Appl. Chem., 2013, vol. 85, no. 7, p. 1515.

    Article  CAS  Google Scholar 

  11. Chen, Y., Chen, H., Aleksandrov, A., and Orlando, Th.M., J. Phys. Chem., 2008, vol. 112, no. 30, p. 6953.

    Article  CAS  Google Scholar 

  12. Alimpiev, S., Grechnikov, A., Sunner, J., Karavanskii, V., Zhabin, S., Simanovsky, Ya., and Niki-forov, S., J. Chem. Phys., 2008, vol. 128, no. 1, p. 014711.

    Article  CAS  Google Scholar 

  13. Cuiffi, J.D., Hayes, D.J., Fonash, S.J., Brown, K.N., and Jones, A.D., Anal. Chem., 2001, vol. 73, no. 6, p. 1292.

    Article  CAS  Google Scholar 

  14. Grechnikov, A.A., Georgieva, V.B., Alimpiev, S.S., Borodkov, A.S., Nikiforov, S.M., Simanovsky, Ya.O., Dimova-Malinovska, D., and Angelov, O.I., J. Phys.: Conf. Ser., 2010, vol. 223, p. 012038.

    Google Scholar 

  15. Zhabin, S.N., Pento, A.V., Grechnikov, A.A., Borodkov, A.S., Sartakov, B.G., Simanovskii, Ya.O., Nikiforov, S.M., and Alimpiev, S.S., Quantum Elec- tron., 2011, vol. 41, no. 9, p. 835.

    Article  CAS  Google Scholar 

  16. Law, K.P., Int. J. Mass Spectrom. Ion Processes, 2010, vol. 290, no. 1, p. 47.

    Article  CAS  Google Scholar 

  17. Grechnikov, A.A., Borodkov, A.S., Zhabin, S.N., and Alimpiev, S.S., J. Anal. Chem., 2014, vol. 69, no. 14, p. 1361.

    Article  CAS  Google Scholar 

  18. Grechnikov, A.A., Borodkov, A.S., Alimpiev, S.S., Nikiforov, S.M., and Simanovskii, Ya.O., J. Anal. Chem., 2013, vol. 68, no. 1, p. 19.

    Article  CAS  Google Scholar 

  19. Northen, T.R., Woo, H.K., Northen, M.T., Nordstrom, A., Uritboonthail, W., Turner, K.L., and Siuzdak, G., J. Am. Soc. Mass Spectrom., 2007, vol. 18, no. 11, p. 1945.

    Article  CAS  Google Scholar 

  20. Alimpiev, S., Grechnikov, A., Sunner, J., Borodkov, A., Karavanskii, V., Simanovsky, Ya., and Nikiforov, S., Anal. Chem., 2009, vol. 81, no. 3, p. 1255.

    Article  CAS  Google Scholar 

  21. Grechnikov, A.A., Borodkov, A.S., Alim-piev, S.S., Nikiforov, S.M., Simanovskii, Ya.O., and Karavanskii, V.A., J. Anal. Chem., 2010, vol. 65, no. 14, p. 1504.

    Article  CAS  Google Scholar 

  22. Alimpiev, S.S., Grechnikov, A.A., Sunner, J., Karavanskii, V.A., and Simanovsky, Ya.O., Rapid Commun. Mass Spectrom., 2011, vol. 25, no. 1, p. 140.

    Article  CAS  Google Scholar 

  23. Nikiforov, S.M., Simanovskii, Ya.O., Grechnikov, A.A., Pento, A.V., and Alimpiev, S.S., Elektromagn. Volny Elektron. Sist., 2012, no. 4, p. 39.

    Google Scholar 

  24. Grechnikov, A.A., Kubasov, A.E., Georgieva, V., Borodkov, A.S., Nikiforov, S.M., Simanovsky, Ya.O., and Alimpiev, S.S., J. Phys.: Conf. Ser., 2012, vol. 398, p. 012033.

    Google Scholar 

  25. Nikiforov, S.M., Grechnikov, A.A., and Karavanskii, V.A., RF Patent 2414697, Byull. Izobret., 2011, no. 8.

    Google Scholar 

  26. Borodkov, A.S., Cand. Sci. (Chem.) Dissertation, Moscow: Inst. Geochem. Anal. Chem., Russ. Acad. Sci., 2012.

    Google Scholar 

  27. Makarov, A., Anal. Chem., 2000, vol. 72, no. 6, p. 1156.

    Article  CAS  Google Scholar 

  28. Makarov, A.A., Grechnikov, A.A., Nikiforov, S.M., Tyutyunnik, O.A., and Denisov, E.V., J. Anal. Chem., 2013, vol. 68, no. 14, p. 1165.

    Article  CAS  Google Scholar 

  29. Alimpiev, S., Nikiforov, S., Karavansky, V., Grechnikov, A., and Sunner, J., Proc. SPIE, 2004, vol. 5506, p. 95.

    Article  CAS  Google Scholar 

  30. Grechnikov, A., Nikiforov, S., Strupat, K., and Makarov, A., Anal. Bioanal. Chem., 2014, vol. 406, no. 13, p. 3019.

    Article  CAS  Google Scholar 

  31. Alimpiev, S.S., Grechnikov, A.A., and Nikiforov, S.M., Physics–Uspekhi, 2015, vol. 58, no. 2, p. 191.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Grechnikov.

Additional information

Original Russian Text © A.A. Grechnikov, 2015, published in Zhurnal Analiticheskoi Khimii, 2015, Vol. 70, No. 9, pp. 916–924.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grechnikov, A.A. Analytical capabilities of surface-assisted laser desorption/ionization in the determination of low-molecular-weight volatile compounds. J Anal Chem 70, 1047–1054 (2015). https://doi.org/10.1134/S1061934815090051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934815090051

Keywords

Navigation