Skip to main content
Log in

Characteristics of an Electrical Double Layer of Bulk Nanobubles in Water

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

When analyzing the characteristics of the electrical double layer of bulk nanobubbles in water, the conditions for the existence of their Stern layer are found. It is taken into account that the surface of the bubble is surrounded by a thin layer of “bound” water, on top of which the counterions of the Stern layer are placed. The stability of this layer depends on two factors: the minimization of the Gibbs energy of counterions in the diffuse layer and the energy of their thermal motion, which is capable of pulling the counterion out of the Stern layer and returning it to the region of the diffuse layer. The charge of nanobubbles has been determined, which corresponds to both the minimum Gibbs energy of counterions and the thermal stability of the Stern layer. The dependence of the critical radius of the stable Stern layer on the concentration of dissolved salts is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Chaplin, M., Water Structure and Science, 2018. www1.lsbu.ac.uk/water/water_structure_science.html.

  2. Nazary, S., Hassanzadeh, A., He, Y., Khoshdast, H., and Kowalczuk, P.B., Recent developments in generation, detection and application of nanobubbles in flotation, Minerals, 2022, vol. 12, no. 4, p. 462. https://doi.org/10.3390/min12040462

    Article  CAS  Google Scholar 

  3. Nirmalkar, N., Pacek, A.W., and Barigou, M. On the existence and stability of bulk nanobubbles, Langmuir, 2018, vol. 34, no. 37, pp. 10964−10973. https://doi.org/10.1021/acs.langmuir.8b01163

    Article  CAS  PubMed  Google Scholar 

  4. Singh, S.B., Shukla, N., Cho, C.H., Kim, B.S., Park, M.H., and Kim, K., Effect and application of micro‑ and nanobubbles in water purification, Toxicol. Environ. Health Sci., 2021, vol. 13, pp. 9–16. https://doi.org/10.1007/s13530-021-00081-x

    Article  CAS  Google Scholar 

  5. Gamayunov, N.I., The influence of a constant magnetic field on moving solutions and suspensions, Colloid J., 1994, vol. 56, no. 2, pp. 290–298.

    CAS  Google Scholar 

  6. Kelsall, G.H., Tang, S., Yurdakult S., and Smith, A.L., Electrophoretic behaviour of bubbles in aqueous electrolytes, J. Chem. Soc., Faraday Trans., 1996, vol. 92, no. 20, pp. 3887–3893. https://doi.org/10.1039/FT9969203887

    Article  CAS  Google Scholar 

  7. Meegoda, J.N., Hewage, S.A., and Batagoda, J.H., Stability of nanobubbles, Environ. Eng. Sci., 2018, vol. 35, no. 11, pp. 1216–1227. https://doi.org/10.1089/ees.2018.0203

    Article  CAS  Google Scholar 

  8. Koshoridze, S.I. and Levin, Yu.K., Comment on “Can bulk nanobubbles be stabilized by electrostatic interaction?” by S. Wang, L. Zhou and Y. Gao, Phys. Chem. Chem. Phys., 2021, vol. 23, no. 31, p. 16501. https://doi.org/10.1039/D1CP04406K

    Article  Google Scholar 

  9. Chan, D.Y.C. and Mitchell, D.J., The free energy of an electrical double layer, J. Colloid Interface Sci., 1983, vol. 95, no. 1, pp. 193–197. https://doi.org/10.1016/0021-9797(83)90087-5

    Article  CAS  Google Scholar 

  10. Bunkin, N.F. and Bunkin, F.V., Bubston structure of water and electrolyte aqueous solutions, Phys.-Usp., 2016, vol. 59, no. 9, pp. 846–865. https://doi.org/10.3367/UFNe.2016.05.037796

    Article  CAS  Google Scholar 

  11. Hewage, S.A., Kewalramani, J., and Meegoda, J.N., Stability of nanobubbles in different salts solutions, Colloids Surf., A, 2021, vol. 609, p. 125669. https://doi.org/10.1016/j.colsurfa.2020.125669

    Article  CAS  Google Scholar 

  12. Meegoda, J.N., Hewage, S.A., and Batagoda, J.H., Application of the diffused double layer theory to nanobubbles, Langmuir, 2019, vol. 35, no. 37, pp. 12100−12112. https://doi.org/10.1021/acs.langmuir.9b01443

    Article  CAS  PubMed  Google Scholar 

  13. Lopez-Garsia, J.J., Moya, A.A., Horno, J., Delgado, A., and Lez-Caballero F.G., A network model of the electrical double layer around a colloid particle, J. Colloid Interface Sci., 1996, vol. 183, no. 1, pp. 124–130. https://doi.org/10.1006/jcis.1996.0525

    Article  Google Scholar 

  14. Ma, X., Li, M., and Pfeiffer P., Ion adsorption stabilizes bulk nanobubbles, J. Colloid Interfac. Sci., 2022, vol. 606, pp. 1380–1394. https://doi.org/10.1016/j.jcis.2021.08.101

    Article  CAS  Google Scholar 

  15. Wang, H., Varghese, J., and Pilon, L., Simulation of electric double layer capacitors with mesoporous electrodes: Effects of morphology and electrolyte permittivity, Electrochim. Acta, 2011, vol. 56, no. 17, pp. 6189–6197. https://doi.org/10.1016/j.electacta.2011.03.140

    Article  CAS  Google Scholar 

  16. Kyzas, G.Z., From Bubbles to Nanobubbles, Nanomaterials, 2021, vol. 11, no. 10, p. 2592. https://doi.org/10.3390/nano11102592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leroy, P., Jougnot, D., Revil, A., Lassin, A., and Azaroual, M., A double layer model of the gas bubble/water interface, J. Colloid Interface Sci., 2012, vol. 388, no. 1, pp. 243–256. https://doi.org/10.1016/j.jcis.2012.07.029

    Article  CAS  PubMed  Google Scholar 

  18. Brown, M.A., Goel, A., and Abbas, Z., Effect of electrolyte concentration on the Stern layer thickness at a charged interface, Angew. Chem, 2016, vol. 128, no. 11. pp. 3854–3858. https://doi.org/10.1002/ange.201512025

    Article  Google Scholar 

  19. Fumagalli, L, Esfandiar, A., Fabregas, R., et al., Anomalously low dielectric constant of confined water, Science, 2018, vol. 360, no. 6395, pp. 1339–1342. https://doi.org/10.1126/science.aat4191

    Article  CAS  PubMed  Google Scholar 

  20. Velasco-Velez, J.-J., Wu, C.H., Pascal, T.A., Wan, L.F., Guo, J., Prendergast, D., and Salmeron, M., The structure of interfacial water on gold electrodes studied by X-ray absorption spectroscopy, Science, 2014, vol. 346, no. 6211, pp. 831–834. https://doi.org/10.1126/science.1259437

    Article  CAS  PubMed  Google Scholar 

  21. Levin, Y., Stability conditions for the Stern layer of bulk nanobubbles in water, Russ. Phys. J., 2023, vol. 65, pp. 2103–2108. https://doi.org/10.1007/s11182-023-02878-4

    Article  Google Scholar 

  22. Stromberg, A.G. and Semchenko, D.P., Fizicheskaya Khimiya (Physical Chemistry), Stromberg A.G., Ed., Moscow: Vysshaya Shkola, 2001.

    Google Scholar 

  23. Dean J.A., Lange’s Handbook of Chemistry, Tennessee, Knoxville, 1999, 15th ed.

    Google Scholar 

  24. Lipus, L.C., Krope, J., and Crepinsek, L., Dispersion destabilization in magnetic water treatment, J. Colloid Interface Sci., 2001, vol. 236. no. 1, pp. 60–66. https://doi.org/10.1006/jcis.2000.7392

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (State Assignment no. 121112200122-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Levin.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, Y.K. Characteristics of an Electrical Double Layer of Bulk Nanobubles in Water. Colloid J 85, 418–422 (2023). https://doi.org/10.1134/S1061933X2360029X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X2360029X

Navigation