Skip to main content
Log in

Electrokinetic Measurements in Highly Concentrated Solutions of Alkali Metal Chlorides

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Capillary electrokinetics has been employed to measure the streaming current in solutions of alkali metal chlorides at electrolyte concentrations of 0.1 and 1 M. The results obtained have confirmed the earlier conclusion that there are no hydrodynamically immobile layers near a solid molecularly smooth surface. It has been shown that the magnitudes of the current and the calculated electrokinetic potential decrease in a series LiCl, NaCl, KCl, RbCl, and CsCl. In this series, the crystallographic radius increases and the radius of a hydrated ion decreases. The obtained dependences have led to a conclusion that the cations located near a negatively charged surface are unhydrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Delgado, A.V., González-Caballero, F., Hunter, R.J., Koopal, L.K., and Lyklema, J., J. Colloid Interface Sci., 2007, vol. 309, p. 194.

    Article  CAS  Google Scholar 

  2. Dukhin, S.S., Elektroprovodnost’ i elektrokineticheskie svoistva dispersnykh system (Electrical Conductivity and Electrokinetic Properties of Dispersed Systems), Kyev: Naukova Dumka, 1975.

  3. Hunter, R.J., Foundations of Colloid Science, Oxford: Univ. Press, 2001, chap. 8.

    Google Scholar 

  4. Lyklema, J., Curr. Opin. Colloid Interface Sci., 2010, vol. 15, p. 125.

    Article  CAS  Google Scholar 

  5. Brown, M.A., Bossa, G.V., and May, S., Langmuir, 2015, vol. 31, p. 11477.

    Article  CAS  Google Scholar 

  6. Lyklema, J., J. Phys.: Condens. Matter, 2001, vol. 13, p. 5027.

    CAS  Google Scholar 

  7. Erickson, D., Li, D., and Werner, C., J. Colloid Interface Sci., 2000, vol. 232, no. 1, p. 186.

    Article  CAS  Google Scholar 

  8. Kijlstra, J., van Leewan, H.P., and Lyklema, J., Langmuir, 1993, vol. 9, p. 1625.

    Article  CAS  Google Scholar 

  9. Löbbus, M., Van Leeuwen, H.P., and Lyklema, J., Colloids Surf., A, 2000, vol. 161, p. 103.

    Article  Google Scholar 

  10. Leroy, P., Devau, N., Revil, A., and Bizi, M., J. Colloid Interface Sci., 2013, vol. 410, p. 81.

    Article  CAS  Google Scholar 

  11. Leroy, P., Tournassat, C., Bernard, O., Devau, N., and Azaroual, M., J. Colloid Interface Sci., 2015, vol. 451, p. 21.

    Article  CAS  Google Scholar 

  12. Li, S., Leroy, P., Heberlink, F., Devau, N., Jougnot, D., and Chiaberg, C., J. Colloid Interface Sci., 2016, vol. 468, 262.

    Article  CAS  Google Scholar 

  13. Jimenez, M.L., Arroyo, F.J., Carrique, F., and Delgado, A.V., J. Colloid Interface Sci., 2007, vol. 309, p. 296.

    Article  CAS  Google Scholar 

  14. Barchini, R., van Leeuwen, H.P., and Lyklema, J., Langmuir, 2000, vol. 16, no. 22, p. 8238.

    Article  CAS  Google Scholar 

  15. van der Wal., A., Minor, M., Norde, W., Zender, A.J.B., and Lyklema, J., Langmuir, 1997, vol. 13, p. 165.

    Article  CAS  Google Scholar 

  16. Minor, M., van Leeuwen, H.P., and Lyklema, J., Langmuir, 1999, vol. 15, p. 6677.

    Article  CAS  Google Scholar 

  17. Lyklema, J., Rovillard, S., and de Coninck, J., Langmuir, 1998, vol. 14, p. 5659.

    Article  CAS  Google Scholar 

  18. Brown, M.A., Abbas, Z., Kleibert, A., Green, R.G., Goel, A., May, S., and Squires, T.M., Phys. Rev., 2016, vol. 6, p. 1.

    Article  Google Scholar 

  19. Sonnefeld, J., Gobel, A., and Vogelsberg, W., Colloid Polym. Sci., 1995, vol. 273, p. 926.

    Article  CAS  Google Scholar 

  20. Karlsson, M., Craven, C., Dove, P.M., and Casey, W.H., Aquat. Geochem., 2001, vol. 7, p. 13.

    Article  CAS  Google Scholar 

  21. Dove, P.M. and Craven, C.M., Geochim. Cosmochim. Acta, 2005, vol. 69, p. 4963.

    Article  CAS  Google Scholar 

  22. Gmur, T.A., Goel, A., and Brown, M., J. Phys. Chem. C, 2016, vol. 120, p. 16617.

    Article  CAS  Google Scholar 

  23. Allen, N., Machesky, M.L., Wesolowsky, D.J., and Kabengi, N., J. Colloid Interface Sci., 2017, vol. 504, p. 538.

    Article  CAS  Google Scholar 

  24. Maloggi, F., ben Jabrallah, S., Girard, L., Siboulet, B., Wang, K., Fontaine, Ph., and Daillant, J., J. Phys. Chem. C, 2019, vol. 123, p. 30294.

    Google Scholar 

  25. Sverjensky, D.A., Geochim. Cosmochim. Acta, 2005, vol. 69, p. 225.

    Article  CAS  Google Scholar 

  26. Sverjensky, D.A., Geochim. Cosmochim. Acta, 2006, vol. 70, p. 2427.

    Article  CAS  Google Scholar 

  27. Dove, P.M., Geochim. Cosmochim. Acta, 1999, vol. 63, p. 3715.

    Article  CAS  Google Scholar 

  28. Churaev, N.V., Sergeeva, I.P., Sobolev, V.D., and Derjaguin, B.V., J. Colloid Interface Sci., 1981, vol. 84, p. 451.

    Article  CAS  Google Scholar 

  29. Sobolev, V.D., Sergeeva, I.P., and Sabbatovskii K.G., Colloid J., 2019, vol. 81, no. 6, p. 747. https://doi.org/10.1134/S1061933X19060164

    Article  Google Scholar 

  30. Gagarin, A.N., Tokmachev, M.G., Trobov, H.T., et al., Russ. J. Phys. Chem., 2020, vol. 94, no. 1, pp. 95–101.

    Article  CAS  Google Scholar 

  31. Tanganov, B. B., Fundam. Issled., 2009, no. 4, p. 29.

  32. Donose, B.C., Vakarelski, I.U., and Higashitanu, K.V., Langmuir, 2005, vol. 21, p. 1834.

    Article  CAS  Google Scholar 

  33. Morag, J., Dishon, M., and Sivan, U., Langmuir, 2013, vol. 29, p. 6317.

    Article  CAS  Google Scholar 

  34. Takaeshi, S. and Koteaki, H., Bull. Chem. Soc. Jpn., 1961, vol. 34, p. 1260.

    Article  Google Scholar 

  35. Goldsack, D.E. and Franchetto, R., Can. J. Chem., 1977, vol. 55, p. 1062.

    Article  CAS  Google Scholar 

  36. Hayamizu, K., Chiba, Y., and Haishi, T., RSC Adv., 2021, vol. 11, p. 20252.

    Article  CAS  Google Scholar 

  37. Wei, Y.-Z., Chiang, P., and Sridhar, S., J. Chem. Phys., 1992, vol. 96, p. 4569.

    Article  CAS  Google Scholar 

  38. Ben-Yaakov, D., Andelman, D., Harries, D., and Podgornik, R., J. Phys. Condens. Matter, 2009, vol. 21, p. 424106.

    Article  Google Scholar 

  39. Levy, A., Andelman, D., and Orland, H., Phys. Rev. Lett., 2012, suppl. 108, p. 227801(5).

  40. Gavish, N. and Promislov, K., Phys. Rev. E., 2016, vol. 94, p. 012611.

  41. Hasted, J.B., Ritson, D.M., and Colle, C.H., J. Chem. Phys., 1948, vol. 16, p. 1.

    Article  CAS  Google Scholar 

  42. Norteman, K., Hilland, J., and Kaatze, U., J. Chem. Phys. A, 1997, vol. 101, p. 6864.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Sobolev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobolev, V.D., Sergeeva, I.P. & Vasileva, E.R. Electrokinetic Measurements in Highly Concentrated Solutions of Alkali Metal Chlorides. Colloid J 84, 754–760 (2022). https://doi.org/10.1134/S1061933X22700144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X22700144

Navigation