Skip to main content
Log in

Reduced Graphene Oxide–Polytetrafluoroethylene Composite Aerogels, Their High Hydrophobicity and Superhydrophilicity

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract—

Composite aerogels based on reduced graphene oxide (rGO) and polytetrafluoroethylene (PTFE) have been synthesized at different component ratios. It has been found by the sessile droplet method that the external surface is highly hydrophobic with water contact angles of 166–170°. The porous structure of aerogel granules has been studied by the standard contact porosimetry method (SCPM). The porosimetric curves obtained with the use of octane and water intersect in the region of small pores, thereby indicating that the specific surface area of the aerogel with respect to water is much larger than that with respect to octane, in spite of the fact that octane is known to wet all materials almost ideally. This phenomenon, which we have classified as superhydrophilicity, is explained by swelling of the sample in water in the region of mesopores due to the hydration of the –CO and –COH surface groups, which have been identified by IR spectroscopy. Thus, the granules of the rGO–PTFE composite aerogel, which have a highly hydrophobic outside surface, have a superhydrophilic inside surface in the area of small pores, which is a unique phenomenon. It has also been found that the degree of superhydrophilicity decreases with an increase in the fraction of PTFE in the aerogels. The reasons for the high hydrophobicity of the external surface of aerogel particles have been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Boinovich, L.B. and Emelyanenko, A.M., Russ. Chem. Rev., 2008, vol. 77, p. 583.

    Article  CAS  Google Scholar 

  2. Baskakov, S.A., Manzhos, R.A., Lobach, A.S., Baskakova, Y.V., Kulikov, A.V., Martynenko, V.M., Milovich, F.O., Kumar, Y., Michtchenko, A., Kabachkov, E.N., Krivenko, A.G., and Shulga, Y.M., J. Non-Cryst. Solids, 2018, vol. 498, p. 236.

    Article  CAS  Google Scholar 

  3. Basharov, S.A., Baskakova, Y.V., Kabachkov, E.N., Dremova, N.N., Shulga, Y.M., and Gutsev, G.L., Langmuir, 2021, vol. 37, p. 10233.

    Article  Google Scholar 

  4. Volfkovich, Yu.M., Bagotzky, V.S., Sosenkin, V.E., and Blinov, I.A., Colloids Surf., A, 2001, vols. 187−188, p. 349.

    Article  Google Scholar 

  5. Volfkovich, Yu.M., Filippov, A.N., and Bagotsky, V.S., Structural Properties of Porous Materials and Powders Used in Different Fields of Science and Technology, London: Springer, 2014.

    Book  Google Scholar 

  6. Volfkovich, Yu.M. and Bagotzky, V.S., J. Power Sources, 1994, vol. 48, p. 339.

    Article  CAS  Google Scholar 

  7. Rouquerol, J., Baron, G., Denoyel, R., Giesche, H., Groen, J., Klobes, P., Levitz, P., Neimark, A.V., Rigby, S., Skudas, R., Sing, K., Thommes, M., and Unger, K., Pure Appl. Chem., 2012, vol. 84, p. 107.

    Article  CAS  Google Scholar 

  8. Baskakov, S.A., Baskakova, Y.V., Blinova, L.N., Kabachkov, E.N., Dremova, N.N., and Shulga, Y.M., High Energy Chem., 2018, vol. 52, p. 355.

    Article  CAS  Google Scholar 

  9. Lobach, A.S., Kazakov, V.A., Spitsyna, N.G., Baskakov, S.A., Dremova, N.N., and Shulga, Y.M., High Energy Chem., 2017, vol. 51, p. 269.

    Article  CAS  Google Scholar 

  10. Shu’ga, Yu.M., Kabachkov, E.N., Baskakov, S.A., and Baskakova, Yu.V., Russ. J. Phys. Chem. A, 2019, vol. 93, p. 296.

    Article  Google Scholar 

  11. Baskakov, S.A., Baskakova, Y.V., Kabachkov, E.N., Dremova, N.N., Michtchenko, A., and Shulga, Y.M., ACS Appl. Mater. Interfaces, 2019, vol. 35, p. 32517.

    Article  Google Scholar 

  12. Volfkovich, Yu.M., Lobach, A.S., Spitsyna, N.G., Baskakov, S.A., Sosenkin, V.E., Rychagov, A.Yu., Kabachkov, E.N., Sakars, A., Michtchenko, A., and Shulga, Y.M., J. Porous Mater., 2019, vol. 26, p. 1111.

    Article  CAS  Google Scholar 

  13. Baskakov, S.A., Baskakova, Y.V., Kabachkov, E.N., Dremova, N.N., Lobach, A.S., Zakutina, E.A., and Shulga, Y.M., High Energy Chem., 2019, vol. 53, p. 407.

    Article  CAS  Google Scholar 

  14. Baskakov, S.A., Baskakova, Y.V., Kabachkov, E.N., Vasilets, V.N., Michtchenko, A., and Shulga, Y.M., Ap-pl. Phys.A: Mater. Sci. Process., 2021, vol. 127, p. 464.

    Article  CAS  Google Scholar 

  15. Baskakov, S.A., Baskakova, Y.V., Kabachkov, E.N., Dremova, N.N., Shulga, Y.M., and Gutsev, G.L., Langmuir, 2021, vol. 37, p. 10233.

    Article  CAS  Google Scholar 

  16. William, S., Hummers, J.R., and Offeman, R.E., J. Am. Chem. Soc., 1958, vol. 80, p. 1339.

    Article  Google Scholar 

  17. Shulga, Y.M., Baskakov, S.A., Smirnov, V.A., Shulga, N.Y., Belay, K.G., and Gutsev, G.L., J. Power Sources, 2014, vol. 245, p. 33.

    Article  CAS  Google Scholar 

  18. Shulga, Y.M., Baskakov, S.A., Muradyan, V.E., Voilov, D.N., Smirnov, V.A., Michtchenko, A., Cabanas-Moreno, J.G., Belay, K.G., Weatherford, C.A., and Gutsev, G.L., ISRN Opt., 2012, ID647849.

    Google Scholar 

  19. Dispersion in Water: Single Layer Graphene Oxide. http://www.graphene-supermarket.com/collections/ graphene-oxide-go/products/dispersion-in-water-single-layer-graphene-oxide-60-ml. Accessed April 30, 2022.

  20. Pham, H.D., Pham, V.H., Cuong, T.V., Nguyen-Phan, T.-D., Chung, J.S., Shin, E.W., and Kim, S., Chem. Commun., 2011, vol. 47, p. 9672.

    Article  CAS  Google Scholar 

  21. Zhang, X., Sui, Z., Xu, B., Yue, S., Luo, Y., Zhan, W., and Liu, B., J. Mater. Chem. C, 2011, vol. 21, p. 6494.

    Article  CAS  Google Scholar 

  22. Chen, W. and Yan, L., Nanoscale, 2011, vol. 3, p. 3132.

    Article  CAS  Google Scholar 

  23. Hong, J.-Y., Sohn, E.-H., Park, S., and Park, H.S., Chem. Eng. J., 2015, vol. 269, p. 229.

    Article  CAS  Google Scholar 

  24. Liu, W., Wang, Y., and Li, Z., Chem. Commun., 2014, vol. 50, p. 10311.

    Article  CAS  Google Scholar 

  25. Volfkovich, Yu.M., Sosenkin, V.E., Mayorova, N.A., Rychagov, A.Y., Baskakov, S.A., Kabachkov, E.N., Korepanov, V.I., Dremova, N.N., Baskakova, Y.V., and Shulga, Y.M., Energy Fuels, 2020, vol. 34, p. 7573.

    Article  CAS  Google Scholar 

  26. Vol’fkovich, Yu.M., Sosenkin, V.E., Maiorova, N.A., Rychagov, A.Yu., Baskakov, S.A., Kabachkov, E.N., Korepanov, V.I., Dremova, N.N., Baskakova, Yu.V., and Shul’ga, Yu.M., Colloid J., 2021, vol. 83, p. 284.

    Article  Google Scholar 

  27. Zisman, W.A., Contact Angle, Wettability, and Adhesion, in Adv. Chem. Ser. 43, Washington, D.C., 1964, p. 1.

  28. Wenzel, R.N., Ind. Eng. Chem., 1936, vol. 28, p. 988.

    Article  CAS  Google Scholar 

  29. Xu, L., Xiao, G., Chen, C., Li, R., Mai, Y., Sun, G., and Yan, D., J. Mater. Chem. A, 2015, vol. 3, p. 7498.

    Article  CAS  Google Scholar 

  30. Bi, H.C., Xie, X., Yin, K.B., Zhou, Y.L., Wan, S., He, L.B., Xu, F., Banhart, F., Sun, L.T., and Ruoff, R.S., Adv. Funct. Mater., 2012, vol. 22, p. 4421.

    Article  CAS  Google Scholar 

  31. Wang, J.L., Shi, Z.X., Fan, J.C., Ge, Y., Yin, J., and Hu, G.X., J. Mater. Chem., 2012, vol. 22, p. 22459.

    Article  CAS  Google Scholar 

  32. Wu, T., Chen, M.G., Zhang, L., Xu, X.Y., Liu, Y., Yan, J., Wang, W., and Gao, J.P., J. Mater. Chem. A, 2013, vol. 1, p. 7612.

    Article  CAS  Google Scholar 

  33. Huang, X.D., Sun, B., Su, D.W., Zhao, D.Y., and Wang, G.X., J. Mater. Chem. A, 2014, vol. 2, p. 7973.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Volfkovich.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volfkovich, Y.M., Sosenkin, V.E., Baskakov, S.A. et al. Reduced Graphene Oxide–Polytetrafluoroethylene Composite Aerogels, Their High Hydrophobicity and Superhydrophilicity. Colloid J 84, 394–403 (2022). https://doi.org/10.1134/S1061933X22040123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X22040123

Navigation