Skip to main content
Log in

Highly Hydrophobic and Superhydrophobic Coatings Based on Linseed Oil and Copolymers of Glycidyl Methacrylate and (Fluoro)Alkyl Methacrylates for Wood Surfaces

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The paper discusses the formation of hydrophobic coatings based on linseed oil and copolymers of glycidyl methacrylate and (fluoro)alkyl methacrylates on the surface of pinewood and shows the possibility of achieving a superhydrophobic state with contact angles as large as 154°. Energy-dispersive X-ray analysis has been employed to show that methacrylate copolymers are uniformly distributed over the wood surface and penetrate to a depth of more than 400 µm. The proposed modification of wood imparts it with stable water-repellent properties, which slow down moisture sorption at the initial stages of a contact with water and reduce water absorption coefficient by a factor of 2.5 after 60-day exposure in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Lin, W., Huang, Y., Li, J., Liu, Z., Yang, W., Li, R., Chen, H., and Zhang, X., Cellulose, 2018, vol. 25, p. 7341.

    Article  CAS  Google Scholar 

  2. Song, L., Zhang, X., Wang, Z., Bai, Y., Feng, Y., and Yao, J., Adv. Mater. Interfaces, 2020, vol. 7, p. 2001166.

    Article  CAS  Google Scholar 

  3. Chen, C., Kuang, Y., Zhu, S., Burgert, I., Keplinger, T., Gong, A., Li, T., Berglund, L., Eichhorn, S.J., and Hu, L., Nat. Rev. Mater., 2020, vol. 5, p. 642.

    Article  CAS  Google Scholar 

  4. Tsyganova, S.I., Korol’Kova, I.V., Bondarenko, G.V., and Kargin, V.F., Russ. J. Appl. Chem., 2011, vol. 84, p. 1997.

    Article  CAS  Google Scholar 

  5. Kumar, R.N. and Pizzi, A., Adhes. Wood Lignocellul. Mater., 2019, p. 223.

    Google Scholar 

  6. Pelaez-Samaniego, M.R., Yadama, V., Lowell, E., and Espinoza-Herrera, R., Wood Sci. Technol., 2013, vol. 47, p. 1285.

    Article  CAS  Google Scholar 

  7. Riedl, B., Angel, C., Prégent, J., Blanchet, P., and Stafford, L., BioResources, 2014, vol. 9, p. 292.

    Article  Google Scholar 

  8. Podgorski, L., Chevet, B., Onic, L., and Merlin, A., Int. J. Adhes. Adhes., 2000, vol. 20, p. 103.

    Article  CAS  Google Scholar 

  9. Sandberg, D., Kutnar, A., and Mantanis, G., iForestBiogeosci. For., 2017, vol. 10, p. 895.

  10. Deka, M. and Saikia, C.N., Bioresour. Technol., 2000, vol. 73, p. 179.

    Article  CAS  Google Scholar 

  11. Saji, A., Int. J. Res. Appl. Sci. Eng. Technol., 2021, vol. 9, p. 776.

    Article  Google Scholar 

  12. Kocaefe, D., Huang, X., and Kocaefe, Y., Curr. For. Rep., 2015, vol. 1, p. 151.

    Google Scholar 

  13. Safin, R.R., Beliakova, E.A., and Mukhtarova, A.R., Solid State Phenom., 2018, vol. 284, p. 975.

    Article  Google Scholar 

  14. Chengyu, W. and Cheng Piao, C.L., J. Appl. Polym. Sci., 2010, vol. 119, p. 1667.

    Google Scholar 

  15. Engelund, E.T., Thygesen, L.G., Svensson, S., and Hill, C.A.S., Wood Sci. Technol., 2013, vol. 47, p. 141.

    Article  CAS  Google Scholar 

  16. Lozhechnikova, A., Vahtikari, K., Hughes, M., and Österberg, M., Energy Build., 2015, vol. 105, p. 37.

    Article  Google Scholar 

  17. Kluev, A.Y., Skakovskii, E.D., Rozhkova, E.I., Kozlov, N.G., Molchanova, O.A., and Puchkova, N.V., Russ. J. Appl. Chem., 2014, vol. 87, p. 230.

    Article  CAS  Google Scholar 

  18. Jebrane, M., Franke, T., Terziev, N., and Panov, D., Wood Mater. Sci. Eng., 2017, vol. 12, p. 220.

    Article  CAS  Google Scholar 

  19. Megnis, M., Olsson, T., Varna, J., and Lindberg, H., Wood Sci. Technol., 2002, vol. 36, p. 1.

    Article  CAS  Google Scholar 

  20. Ahmed, S.A., Morén, T., Sehlstedt-Persson, M., and Blom, A., J. Wood Sci., 2017, vol. 63, p. 74.

    Article  CAS  Google Scholar 

  21. Humar, M. and Lesar, B., Int. Biodeterior. Biodegrad., 2013, vol. 85, p. 223.

    Article  CAS  Google Scholar 

  22. Koski, A. and Ahonen, R., Applicability of Crude Tall Oil for Wood Protection, Oulu: Univ. Oulu, 2008.

    Google Scholar 

  23. Lazzari, M. and Chiantore, O., Polym. Degrad. Stab., 1999, vol. 65, p. 303.

    Article  CAS  Google Scholar 

  24. Dlugogorski, B.Z., Kennedy, E.M., and Mackie, J.C., Fire Sci. Rev., 2012, vol. 1, p. 3.

    Article  Google Scholar 

  25. Temiz, A., Kose, G., Panov, D., Terziev, N., Alma, M.H., Palanti, S., and Akbas, S., J. Appl. Polym. Sci., 2013, vol. 130, p. 1562.

    Article  CAS  Google Scholar 

  26. Chen, J., Soucek, M.D., Simonsick, W.J., and Celikay, R.W., Macromol. Chem. Phys., 2002, vol. 203, p. 2042.

    Article  CAS  Google Scholar 

  27. Chen, J., Wang, Y., Cao, J., and Wang, W., Forests, 2020, vol. 11, p. 271.

    Article  Google Scholar 

  28. Chen, J., Soucek, M.D., Simonsick, W.J., and Celikay, R.W., Polymer (Guildf), 2002, vol. 43, p. 5379.

    Article  CAS  Google Scholar 

  29. Tan, S.G. and Chow, W.S., Polym. Plast. Technol. Eng., 2010, vol. 49, p. 1581.

    Article  CAS  Google Scholar 

  30. Jebrane, M., Fernández-Cano, V., Panov, D., Terziev, N., and Daniel, G., Holzforschung, 2015, vol. 69, p. 173.

    Article  CAS  Google Scholar 

  31. Jebrane, M., Fernández-Cano, V., Panov, D., Terziev, N., and Daniel, G., Holzforschung, 2015, vol. 69, p. 179.

    Article  CAS  Google Scholar 

  32. Kolyaganova, O., Klimov, V.V., Bryuzgin, E.V., Le, M.D., Kharlamov, V.O., Bryuzgina, E.B., Navrotsky, A.V., and Novakov, I.A., J. Appl. Polym. Sci., 2022, vol. 139, p. 51636.

    Article  CAS  Google Scholar 

  33. Gallyamov, M.O., Nikitin, L.N., Nikolaev, A.Y., Obraztsov, A.N., Bouznik, V.M., and Khokhlov, A.R., Colloid J., 2007, vol. 69, p. 411.

    Article  CAS  Google Scholar 

  34. Boinovich, L.B. and Emelyanenko, A.M., Usp. Khim., 2008, vol. 77, p. 619.

  35. Klimov, V.V., Bryuzgin, E.V., Navrotskiy, A.V., and Novakov, I.A., Surf. Interfaces, 2021, vol. 25, p. 101255.

    Article  CAS  Google Scholar 

  36. Zdyrko, B., Swaminatha Iyer, K., and Luzinov, I., Polymer (Guildf), 2006, vol. 47, p. 272.

    Article  CAS  Google Scholar 

  37. Köthe, M., Müller, M., Simon, F., Komber, H., Jacobasch, H.-J., and Adler, H.-J., Colloids Surf., A, 1999, vol. 154, p. 75.

    Article  Google Scholar 

  38. Boinovich, L.B., Emelyanenko, A.M., and Pashinin, A.S., ACS Appl. Mater. Interfaces, 2010, vol. 2, p. 1754.

    Article  CAS  Google Scholar 

  39. Bryuzgin, E.V., Klimov, V.V., Repin, S.A., Navrotskiy, A.V., and Novakov, I.A., Appl. Surf. Sci., 2017, vol. 419, p. 454.

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 19-73-10147.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Bryuzgin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolyaganova, O.V., Duridivko, M.O., Klimov, V.V. et al. Highly Hydrophobic and Superhydrophobic Coatings Based on Linseed Oil and Copolymers of Glycidyl Methacrylate and (Fluoro)Alkyl Methacrylates for Wood Surfaces. Colloid J 84, 416–426 (2022). https://doi.org/10.1134/S1061933X2204007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X2204007X

Keywords:

Navigation