Skip to main content
Log in

Molecular-Thermodynamic Model of Solubilization in Direct Spherical Micelles of Nonionic Surfactants

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

A thermodynamic model has been formulated for the formation work of a molecular aggregate consisting of molecules of a nonionic surfactant and a solubilisate in a hydrocarbon–surfactant–water solution as a function of temperature, concentrations of the surfactant and hydrocarbon in the solution, and aggregation numbers of the surfactant and hydrocarbon in the aggregate. The model depends on the structural parameters and physical characteristics of surfactant and solubilisate molecules. Predictions of the model concerning the minimum and the saddle point of the aggregation work have been considered and the distributions of relative concentrations of aggregates over the aggregation numbers of the surfactant and solubilisate have been plotted at different concentrations of surfactant and hydrocarbon monomers in the solution. The fractions of the surfactant and solubilisate in the aggregates have been numerically estimated relative to the equilibrium concentrations of surfactant and solubilisate monomers, and the average aggregation numbers of the surfactant and solubilisate in the aggregates have been found. The possibility of the colossal accumulation of solubilisate molecules in the molecular aggregates has been shown. The aggregation and solubilization have been considered at equilibrium surfactant concentrations that are markedly lower than the critical micelle concentration in a pure surfactant solution. It has been found that the limiting concentrations of the nonionic surfactant and the solubilisate corresponding to the formation of stable nanoemulsions lie in rather narrow ranges, and it is unlikely to get into them as a result of the random search in laboratory experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Dynamics of Surfactant Self-Assemblies: Micelles, Microemulsions, Vesicles and Lyotropic Phases, Zana, R., Ed., Boca Raton: CRC Press, 2005.

    Google Scholar 

  2. Schramm, L.L., Emulsions, Foams, and Suspensions. Fundamentals and Applications, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2005.

  3. Surfactants and Interfacial Phenomena, Rosen, M.J. and Kunjappu, J.T., Eds., Hoboken, New Jersey: Wiley, 2012.

    Google Scholar 

  4. Micelles: Structural Biochemistry, Formation and Functions & Usage, Bradburn, D. and Bittinger, T., Eds., New York: Nova Science Publ., 2014.

    Google Scholar 

  5. Rusanov, A.I. and Shchekin, A.K., Mitselloobrazovanie v rastvorakh poverkhnostno-aktivnykh veshchestv (Micellization in Surfactant Solutions), St. Petersburg: Lan’, 2016, 2nd ed.

  6. Self-Assembly: From Surfactants to Nanoparticles, Nagarajan, R., Ed., Hoboken: Wiley, 2019.

    Google Scholar 

  7. Tanford, C., The Hydrophobic Effect: Formation of Micelles and Biological Membranes, New York: Wiley, 1980, 2nd ed.

    Google Scholar 

  8. Nagarajan, R. and Ruckenstein, E., in Equations of State for Fluids and Fluid Mixtures, Sengers, J.V., Kayser, R.F., Peters, C.J., and White, H.J., Eds., Amsterdam: Elsevier, 2000, vol. 5, p. 589.

    Google Scholar 

  9. Puvvada, S. and Blankschtein, D., J. Chem. Phys., 1990, vol. 92, p. 3710.

    Article  CAS  Google Scholar 

  10. Kralchevsky, P.A., Danov, K.D., and Anachkov, S.E., Colloid J., 2014, vol. 76, p. 255.

    Article  CAS  Google Scholar 

  11. Danov, K.D., Kralchevsky, P.A., Stoyanov, S.D., Cook, J.L., Stott, I.P., and Pelan, E.G., Adv. Colloid Interface Sci., 2018, vol. 256, p. 1.

    Article  CAS  Google Scholar 

  12. Danov, K.D., Kralchevsky, P.A., Stoyanov, S.D., Cook, J.L., and Stott, I.P., J. Colloid Interface Sci., 2019, vol. 547, p. 245.

    Article  CAS  Google Scholar 

  13. Danov, K.D., Kralchevsky, P.A., Stoyanov, S.D., Cook, J.L., and Stott, I.P., J. Colloid Interface Sci., 2019, vol. 551, p. 227.

    Article  CAS  Google Scholar 

  14. Danov, K.D., Kralchevsky, P.A., Stoyanov, S.D., Cook, J.L., and Stott, I.P., J. Colloid Interface Sci., 2021, vol. 581, p. 262.

    Article  CAS  Google Scholar 

  15. Rusanov, A.I., Grinin, A.P., Kuni, F.M., and Shchekin, A.K., Russ. J. Gen. Chem., 2002, vol. 72, p. 607.

    Article  CAS  Google Scholar 

  16. Rusanov, A.I., Kuni, F.M., Grinin, A.P., and Shchekin, A.K., Colloid J., 2002, vol. 64, p. 605.

    Article  CAS  Google Scholar 

  17. Rusanov, A.I., Colloid J., 2021, vol. 83, p. 127.

    Article  CAS  Google Scholar 

  18. Shchekin, A.K. and Shabaev, I.V., Colloid J., 2010, vol. 72, p. 432.

    Article  CAS  Google Scholar 

  19. Reiss, H., J. Chem. Phys., 1950, vol. 18, p. 840.

    Article  CAS  Google Scholar 

  20. Melikhov, A.A., Kurasov, V.B., Dzhikaev, Yu.Sh., and Kuni, F.M., Sov. Phys. Tech. Phys., 1991, vol. 36, no. 1, p. 14.

    Google Scholar 

  21. Wilemski, G. and Wyslouzil, B.E., J. Chem. Phys., 1995, vol. 103, p. 1127.

    Article  CAS  Google Scholar 

  22. Kuni, F.M., Rusanov, A.I., Shchekin, A.K., and Grinin, A.P., Zh. Fiz. Khim., 2005, vol. 79, p. 967.

    Google Scholar 

  23. Shchekin, A.K., Kuni, F.M., Grinin, A.P., and Rusa-nov, A.I., Nucleation Theory and Application, Schmelzer, J.W.P., Ed., New York: Wiley, 2005.

    Google Scholar 

  24. Shchekin, A.K., Adzhemyan, L.Ts., Babintsev, I.A., and Volkov, N.A., Colloid J., 2018, vol. 80, p. 107.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the PJSC “GAZPROMNEFT.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Shchekin.

Ethics declarations

The authors declare that they have no conflicts of intere-st.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchekin, A.K., Volkov, N.A., Koltsov, I.N. et al. Molecular-Thermodynamic Model of Solubilization in Direct Spherical Micelles of Nonionic Surfactants. Colloid J 83, 518–529 (2021). https://doi.org/10.1134/S1061933X21040128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X21040128

Navigation