Skip to main content
Log in

Polarizability and Electrosurface Properties of Colloidal Graphite Particles in Aqueous KCl Solutions

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Results of studying the electric polarizability of colloidal graphite particles in an aqueous 1 : 1 electrolyte solution at frequencies of 100 Hz to 2.5 MHz have been presented. The polarizability anisotropy, surface conductivity, and electrokinetic potential of graphite particles have been investigated in aqueous KCl solutions with concentrations lower than 0.2 mmol/L. The dispersion of polarizability anisotropy of graphite particles has been determined by the electrooptical method, while their electrokinetic potential has been measured by laser Doppler microelectrophoresis. It has been shown that, at low electric field frequencies, the particles are polarized as dielectric ones. The theory of polarizability of dielectric particles has been employed to calculate the surface conductivity of graphite particles as a function of KCl concentration. As the frequency is increased, the mechanism of conductive particle polarizability begins to dominate over the mechanism of dielectric particle polarizability. In the aforementioned range of KCl concentrations, the electrokinetic potential of the particles varies significantly weaker than their polarizability and lies in a range of 30–36 mV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Natelson, D., Nanostructures and Nanotechnology, Cambridge: Cambridge Univ. Press, 2015.

    Book  Google Scholar 

  2. Marsh, H. and Rodrigez-Reinoso, F., Activated Carbon, Amsterdam: Elsevier Science, 2006.

    Book  Google Scholar 

  3. Kruger, A., Carbon Materials and Nanotechnology, Weinheim: Wiley-VCH, 2010.

    Book  Google Scholar 

  4. Physics and Chemistry of Graphene: Graphene to Nanographene, Enoki, T. and Ando, T., Eds., Singapore: Jenny Stanford, 2019.

    Google Scholar 

  5. Knight, D.S. and White, W.B., J. Mater. Res., 1989, vol. 4, p. 385.

    Article  CAS  Google Scholar 

  6. Ziatdinov, A.M., Izv.Akad. Nauk, Ser. Khim., 2015, p. 1.

    Google Scholar 

  7. Saenko, N.S. and Ziatdinov, A.M., Izv. Vyssh. Uchebn. Zaved.,Khim. Khim. Tekhnol., 2015, vol. 58, no. 5, p. 10.

    CAS  Google Scholar 

  8. Ziatdinov, A.M., Saenko, N.S., and Skryl’nik, P.G., Izv.Akad. Nauk, Ser. Khim., 2017, p. 837.

    Google Scholar 

  9. Ferrari, A.C. and Robertson, J., Phys. Rev. B, 2000, vol. 61, p. 14095.

    Article  CAS  Google Scholar 

  10. Tan, P.H., Dimovsky, S., and Gototsi, Yu., Philos. Trans. R. Soc. London A, 2004, vol. 362, p. 2289.

    Article  CAS  Google Scholar 

  11. Burchell, T.D., Carbon Materials for Advanced Technologies, Amsterdam: Elsevier Science, 1999.

    Google Scholar 

  12. Nakada, K., Fujita, M., Dresselhaus, G., and Dresselhaus, M.S., Phys. Rev. B, 1996, vol. 54, p. 17954.

    Article  CAS  Google Scholar 

  13. Wakabayashi, K., Fujita, M., Ajiki, H., and Sigrist, M., Phys. Rev. B, 1999, vol. 59, p. 8271.

    Article  CAS  Google Scholar 

  14. Shimomura, Y., Takane, Y., and Wakabayashi, K.J., J. Phys. Soc. Jpn., 2011, vol. 80, p. 054710.

    Article  Google Scholar 

  15. Klusek, Z., Kozlowski, W., Waqar, Z., Datta, S., Burnell-Gray, J.S., Makarenko, I.V., Gall, N.R., Rutkov, E.V., Tontegode, A.Ya., and Titkov, A.N., Appl-. Surf. Sci., 2005, vol. 252, p. 1221.

    Article  CAS  Google Scholar 

  16. Ziatdinov, M., Fujii, S., Kusakabe, K., Kiguchi, M., Mori, T., and Enoki, T., Phys. Rev. B, 2013, vol. 87, p. 115427.

    Article  Google Scholar 

  17. Fujii, S., Ziatdinov, M., Ohtsuka, M., Kusakabe, K., Kiguchi, M., and Enoki, T., Faraday Discuss., 2014, vol. 173, p. 173.

    Article  CAS  Google Scholar 

  18. Ziatdinov, A.M., Saenko, N.S., and Skryl’nik, P.G., Vestn. DVO RAN, 2017, no. 6, p. 126.

  19. Kiguchi, M., Takai, K., Joly, V.L.J., Enoki, T., Sumii, R., and Amemiya, K., Phys. Rev. B, 2011, vol. 84, p. 045421.

    Article  Google Scholar 

  20. Bellunato, A., Tash, H.A., Cesa, Y., and Schneider, G.F., Phys. Chem. Chem. Phys., 2016, vol. 17, p. 785.

    Article  CAS  Google Scholar 

  21. Ziatdinov, A.M., Saenko, N.S., and Skryl’nik, P.G., Izv. Vyssh. Uchebn. Zaved.,Khim. Khim. Tekhnol., 2016, vol. 59, no. 9, p. 4.

    Article  CAS  Google Scholar 

  22. Malyarenko, V.V., Ovcharenko, F.D., and Dukhin, S.S., Kolloidn. Zh., 1974, vol. 36, p. 485.

    CAS  Google Scholar 

  23. Voitylov, V.V., Doctoral (Phys.-Math.) Dissertation, St. Petersburg: SPbGU, 1996.

  24. Muller, H., J. Opt. Soc. Am., 1941, vol. 31, p. 286.

    Article  Google Scholar 

  25. Muller, H. and Sakmann, B., J. Opt. Soc. Am., 1942, vol. 32, p. 309.

    Article  Google Scholar 

  26. Shpol’skii, E.V., Usp. Fiz. Nauk, 1945, vol. 27, p. 97.

    Google Scholar 

  27. Tolstoi, N.A. and Feofilov, P.P., Dokl. Akad. Nauk SSSR, 1949, vol. 66, p. 617.

    Google Scholar 

  28. Voitylov, V.V., Trusov, A.A., and Spartakov, A.A., Opt. Spektrosk., 1978, vol. 44, p. 606.

    Google Scholar 

  29. Van de Khyulst, G., Rasseyanie sveta malymi chastitsami (Light Scattering by Small Particles), Moscow: Izd-vo Inostrannoi Literatury, 1961.

  30. Babadzanjanz, L. and Voitylov, A., Colloids Surf. B, 2007, vol. 56, p. 121.

    Article  CAS  Google Scholar 

  31. Voitylov, V.V., Tolstoi, N.A., and Trusov, A.A., Kolloidn. Zh., 1980, vol. 42, p. 1051.

    CAS  Google Scholar 

  32. Berne, B.J. and Pecora, R., Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics, North Chelmsford: Courier Corporation, 2000.

  33. Klemeshev, S.A., Petrov, M.P., Rolich, V.I., Trusov, A.A., Voitylov, A.V., and Vojtylov, V.V., Diam. Relat. Mater., 2016, vol. 69, p. 177.

    Article  CAS  Google Scholar 

  34. Zhivkov, A.M., Colloids Surf. A, 2002, vol. 209, p. 319.

    Article  CAS  Google Scholar 

  35. Zhivkov, A.M. and Hristov, R.P., Colloids Surf. A, 2017, vol. 529, p. 523.

    Article  CAS  Google Scholar 

  36. Hristova, S.H. and Zhivkov, A.M., J. Colloid Interface Sci., 2015, vol. 446, p. 252.

    Article  CAS  Google Scholar 

  37. Bellini, T., Mantegazza, F., Degiorgio, V., Avallone, R., and Saville, D.A., Phys. Rev. Lett., 1999, vol. 82, p. 1560.

    Article  Google Scholar 

  38. Mantegazza, F., Bellini, T., Buscaglia, M., Degiorgio, V., and Saville, D.A., J. Chem. Phys., 2000, vol. 113, p. 6984.

    Article  CAS  Google Scholar 

  39. Voitylov, A.V., Voitylov, V.V., Klemeshev, S.A., Petrov, M.P., Trusov, A.A., and Shilov, V.N., Opt. Spektrosk., 2017, vol. 122, p. 451.

    Article  Google Scholar 

  40. Dukhin, S.S. and Shilov, V.N., Dielektricheskie yavle-niya i dvoinoi elektricheskii sloi v dispersnykh sistemakh i polielektrolitakh (Dielectric Phenomena and Double Electrical Layer in Disperse Systems and Polyelectrolytes), Kiev: Naukova Dumka, 1972.

  41. Shilov, V.N., Borkovskaia, Yu.B., and Budankova, S.N., in Molecular and Colloidal Electro-Optics, Stoylov, S.P. and Stoimenova, M.V., Eds., Boca Raton, FL: CRC, 2007, p. 39.

    Google Scholar 

  42. Petrov, M.P., Shilov, V.N., Trusov, A.A., Voitylov, A.V., and Vojtylov, V.V., Colloids Surf. A, 2016, vol. 506, p. 40.

    Article  CAS  Google Scholar 

  43. Gimsa, J. and Gimsa, U., J. Electrostat., 2017, vol. 90, p. 131.

    Article  Google Scholar 

  44. Spartakov, A.A., Trusov, A.A., Voitylov, A.V., and Vojtylov, V.V., in Molecular and Colloidal Electro-Optics, Stoylov, S.P., and Stoimenova, M.V., Eds., Boca Raton, FL: CRC, 2007, p. 193.

    Google Scholar 

  45. Hong, S.-H., Shen, T.-Z., and Song, J.-K., J. Phys. Chem. C, 2014, vol. 118, p. 26304.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Interdisciplinary Resource Center for Nanotechnology and the Center for Diagnostics of Functional Materials for Medicine, Pharmacology, and Nanoelectronics of the Scientific Park of St. Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Petrov.

Ethics declarations

The authors declare that they have no conflict of int-erest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vezo, O.S., Voitylov, A.V., Voitylov, V.V. et al. Polarizability and Electrosurface Properties of Colloidal Graphite Particles in Aqueous KCl Solutions. Colloid J 82, 354–361 (2020). https://doi.org/10.1134/S1061933X2004016X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X2004016X

Navigation