Skip to main content
Log in

Polypeptides on the Surface of Lipid Membranes. Theoretical Analysis of Electrokinetic Data

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

A theoretical model describing experimental data on the electrophoretic mobility of liposomes, which are formed from mixtures of charged (cardiolipin) and neutral (phosphatidylcholine) lipids and contain polylysine molecules adsorbed on them, is considered. The experimental data show that the ζ potential of the liposomes depends on the concentration of the adsorbed polylysine. The proposed model is used to determine the physically measured characteristics describing the system: the thickness of the adsorbed polymer layer, the surface area fraction occupied by the polymer at saturation, and the polymer–liposome surface binding constant. The performed calculations show that the reversibility of the adsorption dramatically decreases with an increase in the sizes of adsorbed polymer molecules. In addition, the presented model explains the behavior of the point of zero charge upon variations in the system parameters. The considered model is not confined to a specific type of polymers and phospholipids and may be used to study the adsorption of other biologically significant synthetic polycations and polypeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kenawy, E.-R., Worley, S.D., and Broughton, R., Biomacromolecules, 2007, vol. 8, p. 1359.

    Article  CAS  Google Scholar 

  2. Tyagi, P.K., Gupta, B., and Singh, H., J. Macromol. Sci. A, 1993, vol. 30, p. 303.

    Article  Google Scholar 

  3. Kenawy, E.-R., Abdel-Hay, F.I., El-Shanshoury, A.E.-R.R., and El-Newehy, M.H., J. Polym. Sci., Part A: Polym. Chem., 2002, vol. 40, p. 2384.

    Article  CAS  Google Scholar 

  4. Wang, C. and Dong, L., Trends Biotechnol., 2015, vol.33, p. 10.

    Article  CAS  PubMed  Google Scholar 

  5. Vinogradov, S.V., Bronich, T.K., and Kabanov, A.V., Adv. Drug Deliv. Rev., 2002, vol. 54, p. 135.

    Article  CAS  PubMed  Google Scholar 

  6. Kostritskii, A.Yu., Kondinskaia, D.A., Nesterenko, A.M., and Gurtovenko, A.A., Langmuir, 2016, vol. 32, p. 10402.

    Article  CAS  PubMed  Google Scholar 

  7. Horner, A., Antonenko, Y.N., and Pohl, P., Biophys. J., 2009, vol. 96, p. 2689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reuter, M., Schwieger, C., Meister, A., Karlsson, G., and Blume, A., Biophys. Chem., 2009, vol. 144, p. 27.

    Article  CAS  PubMed  Google Scholar 

  9. Marukovich, N., McMurray, M., Finogenova, O., Nesterenko, A., Batishchev, O., and Ermakov, Yu., in Advances in Planar Lipid Bilayers and Liposomes. A Tribute to Marin D. Mitov, Iglic, A. and Genova, J., Eds., Amsterdam: Elsevier, 2013, p. 139.

    Google Scholar 

  10. Marukovich, N.I., Nesterenko, A.M., and Erma-kov, Yu.A., Biol. Membr., 2014, vol. 31, p. 401.

    CAS  Google Scholar 

  11. Finogenova, O.A., Filinskii, D.V., and Ermakov, Yu.A., Biol. Membr., 2008, vol. 25, p. 217.

    Google Scholar 

  12. Finogenova, O.A., Batishchev, O.V., Indenbom, A.V., Zolotarevskii, V.I., and Ermakov, Yu.A., Biol. Membr., 2009, vol. 26, p. 429.

    CAS  Google Scholar 

  13. Ikeda, T., Tazuke, S., and Watanabe, B., Biochem. Biophys. Acta, 1983, vol. 735, p. 380.

    Article  CAS  PubMed  Google Scholar 

  14. Rossi, G. and Monticelli, L., J. Phys.: Condens. Matter, 2014, vol. 26, p. 503101.

    Google Scholar 

  15. Schultz, M., Olubummo, A., and Binder, W.H., Soft Matter, 2012, vol. 8, p. 4849.

    Article  CAS  Google Scholar 

  16. Ivashkov, O.V., Sybachin, A.V., Efimova, A.A., Pergushov, D.V., Orlov, V.N., Schmalz, H., and Yaroslavov, A.A., ChemPhysChem, 2015, vol. 16, p. 2849.

    Article  CAS  PubMed  Google Scholar 

  17. Yaroslavov, A.A., Sitnikova, T.A., Rakhnyanskaya, A.A., Ermakov, Y.A., Burova, T.V., Grinberg, V.Y., and Menger, F.M., Langmuir, 2007, vol. 23, p. 7539.

    Article  CAS  PubMed  Google Scholar 

  18. Yaroslavov, A.A., Kul’kov, V.E., Polinsky, A.S., Baibakov, B.A., and Kabanov, V.A., FEBS Lett., 1994, vol. 340, p. 121.

    Article  CAS  PubMed  Google Scholar 

  19. Laroche, G., Carrier, D., and Pezolet, M., Biochemistry, 1988, vol. 27, p. 6220.

    Article  CAS  PubMed  Google Scholar 

  20. Fevraleva, I.S., Ermakov, Yu.A., and Ataulakhanov, R.I., Immunologiya, 1986, vol. 1, p. 66.

    Google Scholar 

  21. Hesselink, F.T., J. Colloid Interface Sci., 1977, vol. 60, p. 448.

    Article  CAS  Google Scholar 

  22. Hill, R.J., Phys. Rev. E: Stat. Nonlin. Soft Matter Phys., 2004, vol. 70, no. 5, Part 1, p. 051406.

  23. Hill, R.J. and Saville, D.A., Colloids Surf. A, 2005, vol. 267, p. 31.

    Article  CAS  Google Scholar 

  24. Mueller, H., Butt, H.J., and Bamberg, E., J. Phys. Chem. B, 2000, vol. 104, p. 4552.

    Article  CAS  Google Scholar 

  25. Schwieger, C. and Blume, A., Biomacromolecules, 2009, vol. 10, p. 2152.

    Article  CAS  PubMed  Google Scholar 

  26. Yaroslavov, A.A., Sitnikova, T.A., Rakhnyanskaya, A.A., Yaroslavova, E.G., Davydov, D.A., Burova, T.V., Grinberg, V.Y., Shi, L., and Menger, F.M., J. Am. Chem. Soc., 2009, vol. 131, p. 1666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kurihara, K., Adv. Colloid Interface Sci., 2010, vol. 158, p. 130.

    Article  CAS  PubMed  Google Scholar 

  28. Ermakov, Yu.A., Colloid J., 2000, vol. 62, p. 389.

    CAS  Google Scholar 

  29. Khomich, D.A., Nesterenko, A.M., Kostrinskii, A.Yu., Kondinskia, D.A., Ermakov, Yu.A., and Gurtoven-ko, A.A., J. Phys.: Conf. Ser., 2017, vol. 794, p. 012010.

    Google Scholar 

  30. Kim, J., Mosior, M., Chung, L.A., Wu, H., and McLaughlin, S., Biophys. J., 1991, vol. 60, p. 135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hunter, R.J., Zeta Potential in Colloid Science. Principles and Applications, London: Academic, 1981.

    Google Scholar 

  32. Ermakov, Yu.A., Biochim. Biophys. Acta, 1990, vol. 1023, p. 91.

    Article  CAS  PubMed  Google Scholar 

  33. McGeachy, A.C., Caudill, E.R., Liang, D., Cui, Q., Pedersen, J.A., and Geiger, F.M., Chem. Sci., 2018, vol. 9, p. 4285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ermakov, Yu., Kamaraju, K., Dunina-Barkovskaya, A., Vishnyakova, K., Egorov, Y., Anishkin, A., and Sukharev, S., Biochemistry, 2017, vol. 56, p. 5457.

    Article  CAS  PubMed  Google Scholar 

  35. Ermakov, Y.A., Kamaraju, K., Sengupta, K., and Sukharev, S., Biophys. J., 2010, vol. 98, p. 1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ermakov, Y.A., Averbakh, A.Z., Yusipovich, A.I., and Sukharev, S., Biophys. J., 2001, vol. 80, p. 1851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.M. Nesterenko and A.A. Yaroslavov and his colleagues for fruitful discussions and recommendations.

This work was supported by the Russian Foundation for Basic Research, project no. 16-04-00556.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Ermakov.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molotkovsky, R.J., Galimzyanov, T.R. & Ermakov, Y.A. Polypeptides on the Surface of Lipid Membranes. Theoretical Analysis of Electrokinetic Data. Colloid J 81, 125–135 (2019). https://doi.org/10.1134/S1061933X19020108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X19020108

Navigation