Skip to main content
Log in

Structure and Electrical Conductivity of Ring Deposits Resulting from Evaporation of Droplets of Dispersions Containing Gold Nanoparticles with Different Degrees of Anisotropy

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The effect of the degree of anisotropy (axial ratio) of gold nanoparticles on the structure and conductivity of ring deposits formed on a planar substrate upon evaporation of droplets of aqueous dispersions with different particle number concentrations has been studied. A nontrivial phenomenon of a decrease in the specific conductivity of the deposits with an increase in particle concentration in case of gold nanorods dispersions has been revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Notes

  1. Note that, in this case, the particles were redispersed in the same dispersion medium.

  2. Note that GNR dispersions contain quasi-spherical Au nanoparticles. However, their fraction is no higher than 10–15% [13].

  3. The relatively low contrast of the image is, in our opinion, due to the presence of some amount of residual CTAB on the particle surface.

REFERENCES

  1. Deegan, R.G., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2000, vol. 61, p. 475.

    Article  CAS  Google Scholar 

  2. Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., and Witten, T.A., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2000, vol. 62, p. 756.

    Article  CAS  Google Scholar 

  3. Popov, Y.O., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2005, vol. 71, p. 1.

    Google Scholar 

  4. Okubo, T., Yokota, N., and Tsuchida, A., Colloid Polym. Sci., 2007, vol. 285, p. 1257.

    Article  CAS  Google Scholar 

  5. Dmitriev, A.S. and Makarov, P.G., Colloid J., 2015, vol. 77, p. 135.

    Article  CAS  Google Scholar 

  6. Molchanov, S.P., Roldughin, V.I., and Chernova-Kharaeva, I.A., Colloid J., 2015, vol. 77, p. 761.

    Article  CAS  Google Scholar 

  7. Molchanov, S.P., Roldughin, V.I., and Chernova-Kharaeva, I.A., Colloid J., 2015, vol. 77, p. 770.

    Article  CAS  Google Scholar 

  8. Vysotskii, V.I., Roldughin, V.I., Uryupina, O.Ya., and Zaitseva, A.V., Colloid J., 2011, vol. 73, p. 176.

    Article  CAS  Google Scholar 

  9. Vysotskii, V.V., Uryupina, O.Ya., Senchikhin, I.N., and Roldughin, V.I., Colloid J., 2013, vol. 75, p. 142.

    Article  CAS  Google Scholar 

  10. Vysotskii, V.V., Uryupina, O.Ya., Senchikhin, I.N., and Roldughin, V.I., Colloid J., 2013, vol. 75, p. 634.

    Article  CAS  Google Scholar 

  11. Vysotskii, V.V., Roldughin, V.I., Uryupina, O.Ya., Senchikhin, I.N., and Zaitseva, A.V., Colloid J., 2014, vol. 76, p. 531.

    Article  CAS  Google Scholar 

  12. Lohse, S.E. and Murphy, C.J., Chem. Mater., 2013, vol. 25, p. 1250.

    Article  CAS  Google Scholar 

  13. Salavatov, N.A., Dement’eva, O.V., Mikhailichenko, A.I., and Rudoy, V.M., Colloid J., 2018 (in press).

  14. Li, P., Li, Y., Zhou, Z.-K., Tang, S., Yu, X.-F., Shu, X., Wu, Z., Xiao, Q., Zhao, Y., Wang, H., and Chu, P.K., Adv. Mater. (Weinheim, Fed. Repub. Ger.), 2016, vol. 28, p. 2511.

  15. Dugyala, V.R. and Basavaraj, M.G., J. Phys. Chem. B, 2015, vol. 119, p. 3860.

    Article  CAS  PubMed  Google Scholar 

  16. Martin, A., Schopf, C., Pescaglini, A., Wang, J.J., and Iacopino, D., Langmuir, 2014, vol. 30, p. 10206.

    Article  CAS  PubMed  Google Scholar 

  17. Park, K., PhD Thesis (Georgia Inst. of Technology, Atlanta, 2006).

  18. Sharma, V., Park, K., and Srinivasarao, M., Mater. Sci. Eng. R, 2009, vol. 65, p. 1.

    Article  CAS  Google Scholar 

  19. Ramasamy, K. and Gupta, A., J. Mater. Res., 2013, vol. 28, p. 1761.

    Article  CAS  Google Scholar 

  20. Reed, S.J.B., Electron Microprobe Analysis and Scanning Electron Microscopy in Geology, New York: Cambridge Univ. Press, 2005.

    Book  Google Scholar 

  21. Kim, Y.-K., Na, H.-K., Ham, S., and Min, D.-H., RSC Adv., 2014, vol. 4, p. 50091.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Presidium of the Russian Academy of Sciences (Program of Fundamental Research no. 34).

The experiments were carried out using the equipment of the Center for Collective Use of the A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, and the Teaching and Methodical Center of Lithography and Microscopy of Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Vysotskii or O. V. Dement’eva.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vysotskii, V.V., Dement’eva, O.V., Salavatov, N.A. et al. Structure and Electrical Conductivity of Ring Deposits Resulting from Evaporation of Droplets of Dispersions Containing Gold Nanoparticles with Different Degrees of Anisotropy. Colloid J 80, 615–624 (2018). https://doi.org/10.1134/S1061933X18060194

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X18060194

Navigation