Skip to main content
Log in

Features of colloidal disperse structure formation in petroleum bitumen

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Temperature-modulated differential scanning calorimetry has been employed to analyze the structure-related thermal properties of petroleum bitumen. This method enables one to distinguish between “order–disorder” and glass transitions, thereby making it possible to monitor and identify structure-related phase transformations, the signals from which are invisible or overlapped in the thermograms of conventional differential scanning calorimetry. Bitumen has been shown to be a colloidal disperse system only under certain temperature–time conditions. Its dispersed phase may be represented by aggregates of two types with colloidal sizes. Saturated hydrocarbons form a solid crystalline phase in accordance with the regularities of first-order structural phase transitions and nucleation mechanism of phase separation. Asphaltenes and resins form a solid amorphous phase for a relatively long time as a result of a structural relaxation glass transition by the spinodal mechanism of phase separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lesueur, D., Adv. Colloid Interface Sci., 2009, vol. 145, p. 42.

    Article  CAS  Google Scholar 

  2. Loeber, L., Muller, G., Morel, J., and Sutton, O., Fuel, 1998, vol. 77, p. 1443.

    Article  CAS  Google Scholar 

  3. Polacco, G., Filippi, S., Merusi, F., and Stastna, G., Adv. Colloid Interface Sci., 2015, vol. 224, p. 72.

    Article  CAS  Google Scholar 

  4. Redelius, P., Road Mater. Pavement Des., 2009, vol. 10, p. 25.

    Article  Google Scholar 

  5. Wunderlich, B., Boiler, A., Okazaki, I., Ishikiyama, K., Chen, W., Pak, J., Moon, I., and Androsch, R., Thermochim. Acta, 1999, vol. 330, p. 21.

    Article  CAS  Google Scholar 

  6. ASTM D4124-09. Standard Test Method for Separation of Asphalt into Four Fractions, Annual Book of Standards, West Conshohocken ASTM International, 2009.

    Google Scholar 

  7. Masson, J.F. and Polomark, G.M., Thermochim. Acta, 2001, vol. 374, p. 105.

    Article  CAS  Google Scholar 

  8. Kaplan, D.S., J. Appl. Polym. Sci., 1976, vol. 20, p. 2615.

    Article  CAS  Google Scholar 

  9. Hourston, D.Y., Song, M., Schafer, F.U., Pollock, H.M., and Hammiche, A., Thermochim. Acta, 1998, vol. 324, p. 109.

    Article  CAS  Google Scholar 

  10. Masson, J.F., Polomark, G.M., and Collin, P., Energy Fuels, 2002, vol. 16, p. 470.

    Article  CAS  Google Scholar 

  11. Dorset, D.L., Energy Fuels, 2000, vol. 14, p. 685.

    Article  CAS  Google Scholar 

  12. Pechenyi, B.G., Bitumy i bitumnye kompozitsii (Bitumen and Bitumen Compositions), Moscow Khimiya, 1990.

    Google Scholar 

  13. Lipatov, Yu.S., Kolloidnaya khimiya polimerov (Colloid Chemistry of Polymers), Kiev Naukova Dumka, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Firsin.

Additional information

Original Russian Text © I.N. Frolov, T.N. Yusupova, M.A. Ziganshin, E.S. Okhotnikova, A.A. Firsin, 2016, published in Kolloidnyi Zhurnal, 2016, Vol. 78, No. 5, pp. 650–654.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolov, I.N., Yusupova, T.N., Ziganshin, M.A. et al. Features of colloidal disperse structure formation in petroleum bitumen. Colloid J 78, 712–716 (2016). https://doi.org/10.1134/S1061933X16050069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X16050069

Navigation