Skip to main content
Log in

Probabilistic Bernoulli and Euler Polynomials

  • Research Articles
  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

Let \(Y\) be a random variable whose moment generating function exists in a neighborhood of the origin. The aim of this paper is to introduce and study the probabilistic extension of Bernoulli polynomials and Euler polynomials, namely the probabilistic Bernoulli polynomials associated \(Y\) and the probabilistic Euler polynomials associated with \(Y\). Also, we introduce the probabilistic \(r\)-Stirling numbers of the second associated \(Y\), the probabilistic two variable Fubini polynomials associated \(Y\), and the probabilistic poly-Bernoulli polynomials associated with \(Y\). We obtain some properties, explicit expressions, certain identities and recurrence relations for those polynomials. As special cases of \(Y\), we treat the gamma random variable with parameters \(\alpha,\beta > 0\), the Poisson random variable with parameter \(\alpha >0\), and the Bernoulli random variable with probability of success \(p\).

DOI 10.1134/S106192084010072

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, U. S. Government Printing Office, Washington, DC, 1964.

    Google Scholar 

  2. C. R. Adams and A. P. Morse, “Random Sampling in the Evaluation of a Lebesgue Integral”, Bull. Amer. Math. Soc., 45:6 (1939), 442–447.

    Article  MathSciNet  Google Scholar 

  3. J. A. Adell, “Probabilistic Stirling Numbers of the Second Kind and Applications”, J. Theoret. Probab., 35:1 (2022), 636–652.

    Article  MathSciNet  Google Scholar 

  4. A. Bagdasaryan, S. Araci, M. Acikgoz, and Y. He, “Some New Identities on the Apostol-Bernoulli Polynomials of Higher Order Derived from Bernoulli Basis”, J. Nonlinear Sci. Appl., 9:5 (2016), 2697–2704.

    Article  MathSciNet  Google Scholar 

  5. L. Carlitz, “Some Polynomials Related to the Bernoulli and Euler Polynomials”, Util. Math., 19 (1981), 81–127.

    MathSciNet  Google Scholar 

  6. S.-K. Chung, G.-W. Jang, J. Kwon, and J. Lee, “Some Identities of the Degenerate Changhee Numbers of Second Kind Arising from Differential Equations”, Adv. Stud. Contemp. Math. (Kyungshang), 28:4 (2018), 577–587.

    Google Scholar 

  7. L. Comtet, Advanced Combinatorics, The art of finite and infinite expansions, Revised and enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974.

    Book  Google Scholar 

  8. D. Gun and Y. Simsek, “Combinatorial Sums Involving Stirling, Fubini, Bernoulli Numbers and Approximate Values of Catalan Numbers”, Adv. Stud. Contemp. Math. (Kyungshang), 30:4 (2020), 503–513.

    Google Scholar 

  9. M. Kaneko, “Poly–Bernoulli Numbers”, J. Théor. Nombres Bordeaux, 9:1 (1997), 221–228.

    Article  MathSciNet  Google Scholar 

  10. D. Kim and T. Kim, “A Note on Poly-Bernoulli and Higher-Order Poly-Bernoulli Polynomials”, Russ. J. Math. Phys., 22:1 (2015), 26–33.

    Article  MathSciNet  Google Scholar 

  11. D. S. Kim and T. Kim, “Normal Ordering Associated with \(\lambda\)-Whitney Numbers of the First Kind in \(\lambda\)-Shift Algebra”, Russ. J. Math. Phys., 30:3 (2023), 310–319.

    Article  MathSciNet  Google Scholar 

  12. D. S. Kim and T. Kim, “A Note on a New Type of Degenerate Bernoulli Numbers”, Russ. J. Math. Phys., 27:2 (2020), 227–235.

    Article  MathSciNet  Google Scholar 

  13. T. Kim and D. S. Kim, “Probabilistic Degenerate Bell Polynomials Associated with Random Variables”, Russ. J. Math. Phys., 30:4 (2023), 528–542.

    Article  MathSciNet  Google Scholar 

  14. T. Kim and D. S. Kim, “Some Identities Involving Degenerate Stirling Numbers Associated with Several Degenerate Polynomials and Numbers”, Russ. J. Math. Phys., 30:1 (2023), 62–75.

    Article  MathSciNet  Google Scholar 

  15. T. Kim and D. S. Kim, “Some Results on Degenerate Fubini and Degenerate Bell Polynomials”, Appl. Anal. Discrete Math., 17:2 (2023), 548–560.

    Article  MathSciNet  Google Scholar 

  16. T. Kim and D. S. Kim, “Combinatorial Identities Involving Degenerate Harmonic and Hyperharmonic Numbers”, Adv. in Appl. Math., 148:102535 (2023), 15.

    MathSciNet  Google Scholar 

  17. T. Kim, D. S. Kim, and H. K. Kim, “Some Identities Involving Bernoulli, Euler and Degenerate Bernoulli Numbers and Their Applications”, Appl. Math. Sci. Eng., 31:1 (2023), 12.

    Article  MathSciNet  Google Scholar 

  18. T. Kim, D. S. Kim, and J. Kwon, “Some Identities Related to Degenerate \(r\)-Bell and Degenerate Fubini Polynomials”, Appl. Math. Sci. Eng., 31:1 (2023), 13.

    Article  MathSciNet  Google Scholar 

  19. B. F. Kimball, “A Generalization of the Bernoulli Polynomial of Order One”, Bull. Amer. Math. Soc., 41:12 (1935), 894–900.

    Article  MathSciNet  Google Scholar 

  20. A. Leon-Garcia, Probability and Random Processes for Electronic Engineering, Addison-Wesley series in electrical and computer engineering, Addison-Wesley, 1994.

    Google Scholar 

  21. J.-W. Park, B. M. Kim, and J. Kwon, “Some Identities of the Degenerate Bernoulli Polynomials of the Second Kind Arising from \(\lambda\)-Sheffer Sequences”, Proc. Jangjeon Math. Soc., 24:3 (2021), 323–342.

    MathSciNet  Google Scholar 

  22. J.-W. Park and S.-H. Rim, “On the Modified \(q\)-Bernoulli Polynomials with Weight”, Proc. Jangjeon Math. Soc., 17:2 (2014), 231–236.

    MathSciNet  Google Scholar 

  23. S. Roman, The Umbral Calculus, New York, 1984 x+193 pp. ISBN: 0-12-594380-6.

    Google Scholar 

  24. S. M. Ross, Introduction to Probability Models, Twelfth edition of Academic Press, London, 2019.

    Google Scholar 

  25. K. Shiratani, “Kummer’s Congruence for Generalized Bernoulli Numbers and Its Application”, Mem. Fac. Sci. Kyushu Univ. Ser. A, 26 (1972), 119–138.

    MathSciNet  Google Scholar 

  26. R. Soni, A. K. Pathak, and P. Vellaisamy, A Probabilistic Extension of the Fubini Polynomials.

  27. B. Q. Ta, “Probabilistic Approach to Appell Polynomials”, Expo. Math., 33:3 (2015), 269–294.

    Article  MathSciNet  Google Scholar 

  28. H. Teicher, “An Inequality on Poisson Probabilities”, Ann. Math. Statist., 26 (1955), 147–149.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kim.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T., Kim, D.S. Probabilistic Bernoulli and Euler Polynomials. Russ. J. Math. Phys. 31, 94–105 (2024). https://doi.org/10.1134/S106192084010072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106192084010072

Navigation