Skip to main content
Log in

An Approach to Finding the Asymptotics of Polynomials Given by Recurrence Relations

  • Research Articles
  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

Many orthogonal polynomials \(u(n,z)\) (\(n\) is the number of the polynomial, \(z\) is its argument), for example, the Chebyshev, Hermite, Laguerre, Legendre, and other polynomials, are determined by recurrence relations (or finite-difference equations) of the second order. For large numbers \(n\), they are approximated by exponential, trigonometric, or special functions of a compound argument. For example, Hermite polynomials are approximated by the Plancherel–Rotach formulas, in which the special function is \({\rm Ai}\), the Airy function, the Legendre polynomials are approximated by the zero-order Bessel function, etc. In the paper, an approach is developed for finding asymptotics of this type, which are uniform in this case (and unified) with respect to the variable \(z\). The approach is based on the passage from discrete equations to continuous pseudodifferential equations and the subsequent application of the semiclassical approximation to these equations with complex phases. This is a further development of the considerations proposed in the papers of A.I. Aptekarev, S.Yu. Dobrokhotov, D.N. Tulyakov, and A.V. Tsvetkova devoted to asymptotics of the Plancherel–Rotach type for Hermite polynomials and a subclass of Hermite type orthogonal polynomials with multiple indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 3.
Fig. 7.
Fig. 9.
Fig. 10.
Fig. 12.
Fig. 13.
Fig. 15.

Similar content being viewed by others

References

  1. A. Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher Transcendental Functions, Vol. I (Bateman Manuscript Project), McGraw-Hill Book Company, 1953.

    MATH  Google Scholar 

  2. P. K. Suetin, Classical Orthogonal Polynomials, Fizmatlit, Moscow, 2005.

    MATH  Google Scholar 

  3. F. W. J. Olver, Asymptotics and Special Functions, Academic Press, New York, 1974.

    MATH  Google Scholar 

  4. J. S. Geronimo, O. Bruno, and W. van Assche, WKB and Turning Point Theory for Second-Order Difference Equations, vol. 154, Bedleo, Poland, 2002.

    MATH  Google Scholar 

  5. P. Deift and X. Zhou, “A Steepest Descent Method for Oscillatory Riemann-Hilbert Problems. Asymptotics for the MKdV Equation”, Ann. Math., 137 (1993), 295тАУ-368.

    Article  MathSciNet  Google Scholar 

  6. P. Bleher and A. Its, “Semiclassical Asymptotics of Orthogonal Polynomials, Riemann-Hilbert Problem, and the Universality in the Matrix Model”, Ann. Math., 150 (1999), 185-тАУ266.

    Article  MathSciNet  Google Scholar 

  7. P. Deift, T. Kriecherbauer, K.T.-R. McLaughlin, S. Venakides, and X. Zhou, “Strong Asymptotics of Orthogonal Polynomials with Respect to Exponential Weights”, Comm. Pure Appl. Math, 52 (1999), 1491–1552.

    Article  MathSciNet  Google Scholar 

  8. D. N. Tulyakov, “Plancherel-Rotach Type Asymptotics for Solutions of Linear Recurrence Relations with Rational Coefficients”, Sb. Math., 201:9 (2010), 1355–1402.

    Article  MathSciNet  Google Scholar 

  9. A. I. Aptekarev and D. N. Tulyakov, “The Leading Term of the Plancherel–Rotach Asymptotic Formula for Solutions of Recurrence Relations”, Sb. Math., 205:12 (2014), 1696–1719.

    Article  MathSciNet  Google Scholar 

  10. S. Yu. Dobrokhotov and A. V. Tsvetkova, “Lagrangian Manifolds Related to the Asymptotics of Hermite Polynomials”, Math. Notes, 104:6 (2018), 810–822.

    Article  MathSciNet  Google Scholar 

  11. A. I. Aptekarev, S. Yu. Dobrokhotov, D. N. Tulyakov, and A. V. Tsvetkova, “Asymptotics of the Plancherel–Rotach Type for Jointly Orthogonal Herite Polynomials and Recurrent Relations”, Izv. Math.,.

    Google Scholar 

  12. V. P. Maslov, “The Characteristics of Pseudo-Differential Operators and Difference Schemes”, Actes du Congrès International des Mathématiciens, 2 (1971), 755–769.

    MathSciNet  Google Scholar 

  13. Z. Wang and R. Wong, “Asymptotic Expansions for Second-Order Linear Difference Equations with a Turning Point”, Numer. Math., 94 (2003), 147–194.

    Article  MathSciNet  Google Scholar 

  14. V. P. Maslov, Operational Methods, Mir, 1976.

    MATH  Google Scholar 

  15. V. P. Maslov, The Complex WKB Method for Nonlinear Equations. I, Birkhäuser Verlag, 1994.

    Book  Google Scholar 

  16. J. Sjostrand and A. Mellin, “Fourier Integral Operators with Complex Valuedphase Functions”, Proc. of the Internat. Conf. (Nice) on Fourier Integral Operators, (1974).

    Google Scholar 

  17. A. S. Mishchenko, B. Yu. Sternin, V. E. Shatalov, “Geometry of Lagrangian Manifolds and the Canonical Maslov Operator in Complex Phase Space”, J. Soviet Math., 13:1 (1980), 1–23.

    Article  Google Scholar 

  18. V. V. Kucherenko, “Asymptotic of the Solution of Cauchy’s Problem for Equations with Complex Characteristics”, J. Soviet Math., 13:1 (1980), 24–81.

    Article  Google Scholar 

  19. V. P. Maslov and V. G. Danilov, “Pontryagin’s Duality Principle for Calculation of an Effect of Cherenkov’s Type in Crystals and Difference Schemes. II”, Proc. Steklov Inst. Math., 167 (1986), 103–116.

    Google Scholar 

  20. V. V. Belov and S. Yu. Dobrokhotov, “Semiclassical Maslov Asymptotics with Complex Phases. I. General Approach”, Theoret. and Math. Phys., 92:2 (1992), 843–868.

    Article  ADS  MathSciNet  Google Scholar 

  21. M. V. Fedoryuk, Asymptotic Methods for Linear Ordinary Differential Equations, Nauka, 1983 (Russiab).

    MATH  Google Scholar 

  22. V. S. Buslaev and A. A. Fedotov, “The Complex WKB Method for the Harper Equation”, St. Petersburg Math. J., 6:3 (1995), 495–517.

    MathSciNet  Google Scholar 

  23. A. A. Fedotov and E. V. Shchetka, “Complex WKB Method for the Difference Schrödinger Equation with the Potential Being a Trigonometric Polynomial”, St. Petersburg Math. J., 29:2 (2018), 363–381.

    Article  MathSciNet  Google Scholar 

  24. A. Fedotov and F. Klopp, “WKB Asymptotics of Meromorphic Solutions to Difference Equations”, Appl. Anal., (2019).

    Google Scholar 

  25. A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, and A. V. Tsvetkova, “Uniform Asymptotic Solution in the Form of an Airy Function for Semiclassical Bound States in One-Dimensional and Radially Symmetric Problems”, Theoret. and Math. Phys., 201:3 (2019), 1742–1770.

    Article  ADS  MathSciNet  Google Scholar 

  26. V. P. Maslov and M. V. Fedoryuk, Semiclassical Approximation in Quantum Mechanics, D. Reidel Publishing Co., Dordrecht-Boston, Mass., 1981.

    Book  Google Scholar 

  27. V. P. Maslov, Theory of Perturbations and Asymptotic Methods, Izd. Moskov. Univ., 1965 (Russian).

    Google Scholar 

  28. V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Diffraction Problems of Short Waves: Method of Reference Problems, Nauka, 1972 (Russian).

    Google Scholar 

  29. S. Yu. Slavyanov, Asymptotics of Solutions of the One-Dimensional Schrödinger Equation, Izd. Leningrad Univ., 1990 (Russian).

    MATH  Google Scholar 

  30. S. Yu. Dobrokhotov, D. S. Minenkov, and S. B. Shlosman, “Asymptotics of Wave Functions of the Stationary Schrödinger Equation in the Weyl Chamber”, Theoret. and Math. Phys., 197:2 (2018), 1626–1634.

    Article  ADS  MathSciNet  Google Scholar 

  31. S. Yu. Dobrokhotov and V. E. Nazaikinskii, “Efficient Formulas for the Maslov Canonical Operator near a Simple Caustic”, Russ. J. Math. Phys., 25:4 (2018), 545–552.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to A.I. Aptekarev for helpful discussions.

Funding

The research was supported by the Russian Science Foundation (project 21-11-00341).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Yu. Dobrokhotov or A. V. Tsvetkova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobrokhotov, S.Y., Tsvetkova, A.V. An Approach to Finding the Asymptotics of Polynomials Given by Recurrence Relations. Russ. J. Math. Phys. 28, 198–223 (2021). https://doi.org/10.1134/S1061920821020060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920821020060

Navigation