Skip to main content
Log in

Liouville Foliations of Topological Billiards with Slipping

  • Research Articles
  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

In the paper, a new class of integrable billiards, namely, billiards with slipping, is studied. At the reflection from the boundary, a billiard particle of such a system may not only change its velocity, but also move some distance along the border. Some laws of slipping preserve the integrability of flat confocal and circular billiards and billiard books glued from them, i.e., billiards on cell complexes. In the paper, the topology of the Liouville foliations for several integrable billiards with slipping, both flat and locally flat, is studied. Two such systems are Liouville equivalent to integrable geodesics flows of small degrees on nonorientable two-dimensional surfaces, namely, the projective plane and the Klein bottle. This shows that the nonorientability of a two-dimensional surface, in itself, is not an obstacle to its implementability by an appropriate integrable billiard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.

Similar content being viewed by others

References

  1. A. T. Fomenko and V. V. Vedyushkina, “Billiards and Integrability in Geometry and Physics. New Scope and New Potential”, Moscow Univ. Math. Bull., 74:3 (2019), 98–107.

    Article  MathSciNet  MATH  Google Scholar 

  2. V. V. Vedyushkina (Fokicheva) and A. T. Fomenko, “Integrable Geodesic Flows on Orientable Two-Dimensional Surfaces and Topological Billiards”, Izv. Math., 83:6 (2019), 1137–1173.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian Systems, Geometry, Topology, Classification, Chapman & Hall/CRC, Boca Raton FL, 2004.

    Book  MATH  Google Scholar 

  4. M. V. Karasev, and V. P. Maslov, Nonlinear Poisson Brackets: Geometry and Quantization, AMS, Providence RI, 1993.

    MATH  Google Scholar 

  5. V. P. Maslov, Operator Methods, Mir, Moscow, 1976.

    Google Scholar 

  6. A. Avila, J. De Simoi and V. Kaloshin, “An Integrable Deformation of an Ellipse of Small Eccentricity is an Ellipse”, Ann. of Math., 184:2 (2016), 527–558.

    Article  MathSciNet  MATH  Google Scholar 

  7. V. Kaloshin and A. Sorrentino, “On the Local Birkhoff Conjecture for Convex Billiards”, Ann. of Math., 188:1 (2018), 315–380.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. A. Glutsyuk, “On Two-Dimensional Polynomially Integrable Billiards on Surfaces of Constant Curvature”, Dokl. Math., 98:1 (2018), 382–385.

    Article  MATH  Google Scholar 

  9. S. V. Bolotin, “Integrable Birkhoff billiards”, Moscow Univ. Mech. Bull., 45:2 (1990), 10–13.

    MathSciNet  MATH  Google Scholar 

  10. M. Bialy and A. E. Mironov, “Angular Billiard and Algebraic Birkhoff Conjecture”, Adv. Math., 313 (2017), 102–126.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Bialy and A. E. Mironov, “Polynomial Non-Integrability of Magnetic Billiards on the Sphere and the Hyperbolic Plane”, Rus. Math. Surv., 74:2 (2019), 187–209.

    Article  MATH  Google Scholar 

  12. V. V. Vedyushkina, A. T. Fomenko, and I. S. Kharcheva, “Modeling Nondegenerate Bifurcations of Closures of Solutions for Integrable Systems with Two Degrees of Freedom by Integrable Topological Billiards”, Dokl. Math., 97 (2018), 174–176.

    Article  MathSciNet  MATH  Google Scholar 

  13. V. V. Fokicheva (Vedyushkina), “A Topological Classification of Billiards in Locally Planar Domains Bounded by Arcs of Confocal Quadrics”, Sb. Math., 206:10 (2015), 1463–1507.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. T. Fomenko and V. A. Kibkalo, “Saddle Singularities in Integrable Hamiltonian Systems: Examples and Algorithms”, Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics, Understanding Complex Systems, eds. V. A. Sadovnichiy, M. Z. Zgurovsky, Springer, Cham, 2021, 1–26.

    Google Scholar 

  15. A. T. Fomenko, “Morse Theory of Integrable Hamiltonian Systems”, Soviet Math. Dokl., 33:2 (1986), 502–506.

    MATH  Google Scholar 

  16. A. A. Oshemkov, “Fomenko Invariants for the Main Integrable Cases of Rigid Body Motion Equations”, Adv. in Sov. Math., 6 (1991), 67–146.

    MathSciNet  MATH  Google Scholar 

  17. A. T. Fomenko and H. Zieschang, “On the Topology of the Three-Dimensional Manifolds Arising in Hamiltonian Mechanics”, Soviet Math. Dokl., 35:2 (1987), 520–534.

    MathSciNet  MATH  Google Scholar 

  18. A. T. Fomenko, “The Symplectic Topology of Completely Integrable Hamiltonian Systems”, Russ. Math. Surveys., 44:1 (1989), 181–219.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. A. T. Fomenko and H. Zieschang, “On Typical Topological Properties of Integrable Hamiltonian Systems”, Math. USSR-Izv., 32:2 (1989), 385–412.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. T. Fomenko and H. Zieschang, “A Topological Invariant and a Criterion for the Equivalence of Integrable Hamiltonian Systems with Two Degrees of Freedom”, Math. USSR-Izv., 36:3 (1991), 567–596.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. V. Bolsinov, P. Richter, and A. T. Fomenko, “The Method of Loop Molecules and the Topology of the Kovalevskaya Top”, Sb. Math., 191:2 (2000), 151–188.

    Article  MathSciNet  MATH  Google Scholar 

  22. V. A. Kibkalo, “The topology of the Analog of Kovalevskaya Integrability Case on the Lie Algebra so(4) Under Zero Area Integral”, Moscow Univ. Math. Bull., 71:3 (2016), 119–123.

    Article  MathSciNet  MATH  Google Scholar 

  23. V. A. Kibkalo, “Topological Analysis of the Liouville Foliation for the Kovalevskaya Integrable Case on the Lie Algebra so(4)”, Lobachevskii J. Math., 39:9 (2018), 1396–1399.

    Article  MathSciNet  MATH  Google Scholar 

  24. V. A. Kibkalo, “Topological Classification of Liouville Foliations for the Kovalevskaya Integrable Case on the Lie Algebra so(4)”, Sb. Math., 210:5 (2019), 625–662.

    Article  MathSciNet  MATH  Google Scholar 

  25. V. A. Kibkalo, “Topological Classification of Liouville Foliations for the Kovalevskaya Integrable Case on the Lie Algebra so(3, 1)”, Topol. and Appl., 275 (2020), 13.

    Article  MathSciNet  MATH  Google Scholar 

  26. P. V. Morozov, “The Liouville Classification of Integrable Systems of the Clebsch Case”, Sb. Math., 193:10 (2002), 1507–1533.

    Article  MathSciNet  MATH  Google Scholar 

  27. P. V. Morozov, “Topology of Liouville Foliations in the Steklov and the Sokolov Integrable Cases of Kirchhoff’s Equations”, Sb. Math., 195:3 (2004), 369–412.

    Article  MathSciNet  MATH  Google Scholar 

  28. E. A. Kudryavtseva and A. A. Oshemkov, “Bifurcations of Integrable Mechanical Systems with Magnetic Field on Surfaces of Revolution”, Chebyshevskii Sbornik, 21:2 (2020), 244–265.

    MathSciNet  MATH  Google Scholar 

  29. V. V. Vedyushkina and I. S. Kharcheva, “Billiard Books Model All Three-Dimensional Bifurcations of Integrable Hamiltonian Systems”, Sb. Math., 209:12 (2018), 1690–1727.

    Article  MathSciNet  MATH  Google Scholar 

  30. V. V. Vedyushkina, “Integrable Billiards on CW-Complexes and Integrable Hamiltonian Systems”, D. Sc. Thesis, Lomonosov MSU, (2020).

    Google Scholar 

  31. V. V. Vediushkina, V. A. Kibkalo and A. T. Fomenko, “Topological Modeling of Integrable Systems by Billiards: Realization of Numerical Invariants”, Dokl. Math., 102 (2020), 269–271.

    Article  Google Scholar 

  32. V. V. Vedyushkina and V. A. Kibkalo, “Billiard Realization of Numerical Invariants of Seifert Fibrations of Integrable Systems”, Moscow Univ. Math. Bull., 75:4 (2020), 22–28.

    Article  MathSciNet  Google Scholar 

  33. A. T. Fomenko, V. V. Vedyushkina, “Implementation of Integrable Systems by Topological, Geodesic Billiards with Potential and Magnetic Field”, Russ. J. Math. Phys., 26 (2019), 320–333.

    Article  MathSciNet  MATH  Google Scholar 

  34. A. T. Fomenko and V. V. Fokicheva, “Integrable Billiards Model Important Integrable Cases of Rigid Body Dynamics”, Dokl. Math., 92:3 (2015), 682–684.

    Article  MathSciNet  MATH  Google Scholar 

  35. V. V. Vedyushkina (Fokicheva) and A. T. Fomenko, “Integrable Topological Billiards and Equivalent Dynamical Systems”, Izv. Math., 81:4 (2017), 688–733.

    Article  MathSciNet  MATH  Google Scholar 

  36. V. V. Vedyushkina, “Liouville Foliation of Billiard Book Modeling Goryachev-Chaplygin Case”, Moscow Univ. Math. Bull., 75:1 (2020), 42–46.

    Article  MathSciNet  MATH  Google Scholar 

  37. V. V. Vedyushkina, “Integrable Billiard Systems Realize Toric Foliations on Lens Spaces and the 3-Torus”, Sb. Math., 211:2 (2020), 201–225.

    Article  MathSciNet  MATH  Google Scholar 

  38. V. V. Vedyushkina, “The Fomenko-Zieschang Invariants of Nonconvex Topological Billiards”, Sb. Math., 210:3 (2019), 310–363.

    Article  MathSciNet  MATH  Google Scholar 

  39. V. V. Vedyushkina, “The Liouville Foliation of Nonconvex Topological Billiards”, Dokl. Math., 97:1 (2018), 1–5.

    Article  MathSciNet  MATH  Google Scholar 

  40. V. Lazutkin, KAM Theory and Semiclassical Approximations to Eigenfunctions, Springer, Berlin, 1993.

    Book  MATH  Google Scholar 

  41. E. A. Kudryavtseva, “Liouville Integrable Generalized Billiard Flows and Poncelet Type Theorems”, J. Math. Sci., 225:4 (2017), 611–638.

    Article  MathSciNet  MATH  Google Scholar 

  42. V. V. Fokicheva (Vedyushkina), Topological Classification of Integrable Billiards, PhD Thesis, Lomonosov MSU, 2016.

    Google Scholar 

  43. V. V. Kozlov, “Topological Obstructions to the Integrability of Natural Mechanical Systems”, Soviet Math. Dokl., 20:6 (1979), 1413–1415.

    MATH  Google Scholar 

  44. V. N. Kolokoltsov, “Geodesic Flows on Two-Dimensional Manifolds with an Additional First Integral That is Polynomial in the Velocities”, Math. USSR-Izv., 21:2 (1983), 291–306.

    Article  Google Scholar 

  45. I. K. Babenko and N. N. Nekhoroshev, “On Complex Structures on Two-Dimensional Tori Admitting Metrics with Nontrivial Quadratic Integral”, Math. Notes, 58:5 (1995), 1129–1135.

    Article  MathSciNet  MATH  Google Scholar 

  46. A. V. Bolsinov, V. S. Matveev and A. T. Fomenko, “Two-Dimensional Riemannian Metrics with Integrable Geodesic Flows. Local and Global Geometry”, Sb. Math., 189:10 (1998), 1441–1466.

    Article  MathSciNet  MATH  Google Scholar 

  47. V. S. Matveev, “Quadratically Integrable Geodesic Flows on the Torus and on the Klein Bottle”, Regul. Chaotic Dyn., 2:1 (1997), 96–102.

    MATH  Google Scholar 

  48. V. S. Matveev, “Geodesic Flows on the Klein Bottle, Integrable by Polynomials in Momenta of Degree Four”, Regul. Chaotic Dyn., 2:2 (1997), 106–112.

    MATH  Google Scholar 

  49. Nguyen Tien Zung, L. S. Polyakova and E. N. Selivanova, “Topological Classification of Integrable Geodesic Flows on Orientable Two-Dimensional Riemannian Manifolds with Additional Integral Depending on Momenta Linearly or Quadratically”, Funct. Anal. Appl., 27:3 (1993), 186–196.

    Article  MathSciNet  MATH  Google Scholar 

  50. E. N. Selivanova, “Classification of Geodesic Flows of Liouville Metrics on the Two-Dimensional Torus Up to Topological Equivalence”, Russ. Acad. Sci. Sb. Math., 75:2 (1993), 491–505.

    MathSciNet  MATH  Google Scholar 

  51. V. V. Kalashnikov, “Topological Classification of Quadratic-Integrable Geodesic Flows on a Two Dimensional Torus”, Russ. Math. Surveys, 50:1 (1995), 200–201.

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Vladislav Kibkalo for valuable comments and remarks.

Funding

The research in Sec. 1 of this work was funded by Russian Foundation for Basic Research (project 19-01-00775a) and done at Moscow Center for Fundamental and Applied Mathematics. The research in Sections 2-5 was supported by the Russian Science Foundation (project 20-71-00155) and done at Lomonosov Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Fomenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fomenko, A.T., Vedyushkina, V.V. & Zav’yalov, V.N. Liouville Foliations of Topological Billiards with Slipping. Russ. J. Math. Phys. 28, 37–55 (2021). https://doi.org/10.1134/S1061920821010052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920821010052

Navigation