Skip to main content
Log in

Van der Waals equation from the viewpoint of probability distribution and the triple point as the critical point of the liquid-to-solid transition

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that a distribution of the type of the Bose-Einstein distribution describes the van der Waals gas, while the Fermi-Dirac distribution describes the van der Waals liquid. We present the construction of the binodal, the melting curve, and the liquid-to-amorphous-solid transition under negative pressure. The notion of correlation sphere and the two-scale picture on the Hougen-Watson diagram are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Maslov, Perturbation Theory and Asymptotic Methods (Izd. Moskov. Univ., Moscow, 1965; Dunod, Paris, 1972) [in Russian and French].

    Google Scholar 

  2. B. B. Kadomtsev, Dynamics and Information (Editorial Board of the journal Uspekhi Fiz. Nauk, Moscow, 1999).

    Google Scholar 

  3. A. N. Shiryaev, Probability. Vol. 1: Elementary Probability Theory. Mathematical Foundations. Linit Theorems (MCCME, Moscow, 2004) [in Russian].

    Google Scholar 

  4. L. D. Landau and E. M. Lifshits, Statistical Physics (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  5. V. P. Maslov, “On the Number of Eigenvalues for a Gibbs Ensemble of Self-Adjoint Operators,” Mat. Zametki 83(3), 465–467 (2008) [Math. Notes 83 (3–4), 424–427 (2008)].

    Article  MathSciNet  Google Scholar 

  6. V. P. Maslov, “Gibbs and Bose-Einstein Distributions for an Ensemble of Self-Adjoint Operators in Classical Mechanics,” Teoret. Mat. Fiz. 155(2), 312–316 (2008) [Theoret. and Math. Phys. 155 (2), 775–779 (2008)].

    Article  MathSciNet  Google Scholar 

  7. V. P. Maslov, “Quasi-Particles Associated with Lagrangian Manifolds Corresponding to Semiclassical Self-Consistent Fields. IV-XI,” Russ. J. Math. Phys. 3(3) 401–406, (4) 529–534 (1995), 4 (1) 117–122, (2) 265–270, (4) 539–546 (1996), 5 (1) 123–130, (2) 273–278, (3) 405–412 (1997).

    MATH  Google Scholar 

  8. V. P. Maslov, “Undistinguishing Statistics of Objectively Distinguishable Objects: Thermodynamics and Superfluidity of Classical Gas,” Math. Notes 94(5), 722–813 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  9. E. M. Apfelbaum and V. S. Vorob’ev, “Regarding the Universality of Some Consequences of the van der Waals Equation in the Supercritical Domain,” J. Phys. Chem. B 117(25) 7750–7755 (2013).

    Article  Google Scholar 

  10. V. P. Maslov, “Statistics Corresponding to Classical Thermodynamics. Construction of Isotherms,” Russian J. Math. Phys. 22(1), 53–67 (2015).

    Article  ADS  Google Scholar 

  11. V. P. Maslov, “On the Semiclassical Transition in the Quantum Gibbs Distribution,” Math. Notes 97(4), 565–574 (2015).

    Article  Google Scholar 

  12. I. V. Melikhov, Physical-Chemical Evolution of Solids (Binom, Moscow, 2009).

    Google Scholar 

  13. N. A. Shabanova, V. V. Popov, and P. D. Sarkisov, Chemistry and Technology of Nanodispersive Waste (IKTs “Akademkniga,” Moscow, 2007).

    MATH  Google Scholar 

  14. S. V. Razorenov, G. I. Kanel’, and V. E. Fortov, “Iron at Large Negative Pressures,” JETP Lett. 80(5), 395–397 (2004).

    Article  Google Scholar 

  15. S. I. Ashitkov, M. A. Agranat, G. I. Kanel’, P. S. Komarov, and V. E. Fortov, “Behavior of Aluminum near the Theoretical Ultimate Strength in Experiments with Femtosecond Laser Impact,” JETP Lett. 92(8), 568–573 (2010).

    Article  Google Scholar 

  16. M. Wilson and P. F. McMillan, “Crystal-Liquid Phase Relations in Silicon at Negative Pressure,” Phys. Rev. Lett. 90(13), 135703-1–135703-4 (2003).

    Article  ADS  Google Scholar 

  17. I. L. Iosilevskii and A. Yu. Chigvintsev, “How Does the Metastable Melting Curve End as T → 0? (Spinodal Decay of the Melting Zone in the Limit of Zero Temperature (T → 0)),” Khimiya i komp’yuternoe modelirovanie. Butlerovskie soobshcheniia. Prilozhenie k spetsvypusku (10), 128–133 (2002).

    Google Scholar 

  18. V.P Maslov, “Jump in the Number of Collective Degrees of Freedom as a Phase Transition of the First Kind,” Math. Notes 97(2), 230–242 (2015).

    Article  Google Scholar 

  19. V. P. Maslov, “Gas-Amorphous Solid and Liquid-Amorphous Solid Phase Transitions. Introduction of Negative Mass and Pressure from the Mathematical Viewpoint,” Math. Notes 97(3), 423–430 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Maslov.

Additional information

Arnold. You’ve made your bed and I’m afraid you must lie on it. p ]William Somerset Maugham, “The Circle.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslov, V.P. Van der Waals equation from the viewpoint of probability distribution and the triple point as the critical point of the liquid-to-solid transition. Russ. J. Math. Phys. 22, 188–200 (2015). https://doi.org/10.1134/S1061920815020065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920815020065

Keywords

Navigation