Skip to main content
Log in

Finite temperature quantum field theory in the heat kernel method

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

The heat kernel trace in a (D+1)-dimensional Euclidean spacetime is used to derive free energy in the finite temperature field theory. The spacetime presents a D-dimensional compact space (domain) with a (D-1)-dimensional boundary, and one closed dimension, whose volume is proportional to Planck’s inverse temperature. The thermal sum arises due to the topology of the closed Euclidean time. The free energy thus obtained is a functional of the Planck’s inverse temperature and the geometry of the system. Its ‘high temperature’ asymptotic expressions, given for (3+1) and (2+1) dimensions, contain two contributions defined by the volume of the domain and by the volume of boundary of the domain. No universal asymptotic of free energy exists while approaching the absolute zero temperature, which is forbidden topologically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Vasil’ev, Functional Methods in Quantum Field Theory and Statistics (Leningrad, Izdatelstvo Leningradskogo universiteta, 1976), English transl. (New York, Gordon and Breach, 1998).

    Google Scholar 

  2. J. I. Kapusta and C. Gale, Finite-Temperature Field Theory: Principles and Applications (Cambridge University Press, 2006).

    Book  Google Scholar 

  3. H. Umezawa, H. Matsumoto, and M. Tachiki, Thermo Field Dynamics and Condensed States (Amsterdam, North Holland, 1982).

    Google Scholar 

  4. N. E. Hurt, Geometric Quantization in Action: Applications of Harmonic Analysis in Quantum Statistical Mechanics and Quantum Field Theory (Dordrecht, Reidel, 1983), Russian transl. (Moscow, Mir, 1985).

    Book  MATH  Google Scholar 

  5. A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Quantum Field Theoretical Methods in Statistical Physics (Moscow, Fizmatgiz, 1962), English transl. (New York, Pergamon, 1965).

    Google Scholar 

  6. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (San Francisco, CA, McGrow Hill Book Co., 2003).

    Google Scholar 

  7. K. S. Novoselov et al, “Two-Dimensional Gas of Massless Dirac Fermions in Graphene,” Nature 438, 197–200 (2005).

    Article  ADS  Google Scholar 

  8. J. S. Schwinger, Particles, Sources, and Fields, Vol. 1 (Reading, MA, Addison-Wesley, 1970), Vol. 2 (Reading, MA, Addison–Wesley, 1973), Russian transl.: Vol. 1 (Moscow, Mir, 1973), Vol. 2 (Moscow, Mir, 1976).

    Google Scholar 

  9. G. A. Vilkovisky, “Expectation Values and Vacuum Currents of Quantum Fields,” Lecture Notes in Phys. 737, 729–784 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  10. J. Schwinger, “On Gauge Invariance and Vacuum Polarization,” Phys. Rev. 82, 664–679 (1951).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. J. Schwinger, A Report on Quantum Electrodynamics in J. Mehra (ed.), The physicist’s conception of Nature, 413–429 (Dordrecht, Holland, D. Reidel Publ. Co., 1973).

  12. T. J. Quinn, Temperature. 2nd ed. (San Diego: Academic Press, 1990), Russian transl. (Moscow, Mir, 1985).

    Google Scholar 

  13. A. Sommerfeld, Lectures on Theoretical Physics. Vol. V. Thermodynamics and Statistical Mechanics (New York, Academic Press, 1956).

    Google Scholar 

  14. R. Kubo, Thermodynamics. An Advanced Course with Problems and Solutions (Amsterdam, North-Holland Publ. Co., 1968), Russian transl. (Moscow: Mir, 1970).

    Google Scholar 

  15. C. Kittel, Introduction to Solid State Physics (7th edition, New York, NY, John Wiley & Sons, Inc., 1996), Russian transl. (Moscow, Nauka, 1978).

    Google Scholar 

  16. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics. Vol. 5. Statistical Physics. Part 1 (3rd. ed., Moscow, Nauka, 1976), English transl. (Oxford, Pergamon, 1980).

    Google Scholar 

  17. J. B. J. Fourier, The Analytical Theory of Heat (Cambridge University Press, 1878).

    Google Scholar 

  18. M. Planck and M. Masius, The Theory of Heat Radiation (Philadelphia, Blakinston’s, 1914).

    Google Scholar 

  19. R. Kubo, M. Toda, and N. Hatshitsume, Statistical Physics. II. Nonequilibrium Statistical Mechanics (Berlin, FRG, Springer-Verlag, 1978).

    Google Scholar 

  20. P. A. M. Dirac, “The Lagrangian in Quantum Mechanics,” Physikalische Zeitschrift der Sowietunion 3, 64–72 (1933), Russian transl. in P. A. M. Dirac, On the Creation of Quantum Field Theory (Moscow, Nauka, 1990), pp. 209–217.

    Google Scholar 

  21. A. O. Barvinsky and G. A. Vilkovisky, “The Generalized Schwinger-Dewitt Technique in Gauge Theories and Quantum Gravity,” Phys. Rep. 119, 1–74 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  22. V. Fock, “Über die invariante Form der Wellen- und der Bewegungsgleichungen einen geladenen Massenpunkt,” Zeitschrift für Physik [On the Invariant Form the of Wave and Motion Equations for a Charged Point Mass] 39, 226–232 (1926), English transl. Phys. Uspekhi 53, 839–841 (2010).

    Article  ADS  MATH  Google Scholar 

  23. B. S. DeWitt, Dynamical Theory of Groups and Fields (New York, Gordon and Breach, 1965). Also in C. DeWitt and B. DeWitt (eds.) Relativity, Groups and Topology, 587–822. (New York, Gordon and Breach, 1964), Russian transl. (Moscow, Nauka, 1987).

    MATH  Google Scholar 

  24. V. S. Vladimirov, Equations of Mathematical Physics (New York, NY, Marcel Dekker Inc., 1971), Russian 4th ed. (Moscow, Nauka, 1981).

    Google Scholar 

  25. G. A. Vilkovisky, “Heat Kernel: recontre entre physiciens et mathematiciens,” Publication de l’Institut de Recherche Mathématique Avancée, R.C.P. 25, 43, 203 (Strasbourg, France, IRMA, 1992).

    Google Scholar 

  26. V. Fock, “Proper Time in Classical and Quantum Mechanics,” Izvestia AN 4–5 551 (1937) [in Russian]. Reprinted in V.A. Fock, Works in Quantum Field Theory (Leningrad, Leningrad University Press, 1957), pp. 141–158. English transl. in L. D. Faddeev, L. A. Khalfin, I. V. Komarov (eds.), V. A. Fock. Selected Works: Quantum Mechanics and Quantum Field Theory, 421–439 (Boca Raton, FL, Chapman & Hall/CRC, 2004).

    Google Scholar 

  27. B. S. DeWitt, Global Approach to Quantum Field Theory, Vols. 1 and 2. (Oxford, Oxford University Press, 2003).

    MATH  Google Scholar 

  28. H. S. Ruse, “Taylor’s Theorem in the Tensor Calculus,” Proc. London Math. Soc. 32, 87–92 (1931).

    Article  MathSciNet  Google Scholar 

  29. J. L. Synge, Relativity. The General Theory (Amsterdam, Netherlands, North Holland, 1960), Russian transl. (Moscow, Mir, 1963).

    MATH  Google Scholar 

  30. I. G. Avramidi, “Covariant Techniques for Computation of the Heat Kernel,” Rev. Math. Phys. 11, 947–980 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  31. A. O. Barvinsky and G. A. Vilkovisky, “Beyond the Schwinger-Dewitt Technique: Converting Loops into Trees and in-in Currents,” Nucl. Phys. B 282, 163–188 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  32. A. O. Barvinsky and G. A. Vilkovisky, “Covariant Perturbation Theory. 2: Second Order in the Curvature. General Algorithms,” Nucl. Phys. B 333, 471–511 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  33. Yu. V. Gusev, “Heat Kernel Expansion in the Covariant Perturbation Theory,” Nucl. Phys. B 807, 566–590 (2009).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. A. O. Barvinsky, Yu. V. Gusev, G. A. Vilkovisky, and V. V. Zhytnikov, “Asymptotic Behaviors of the Heat Kernel in Covariant Perturbation Theory,” J. Math. Phys. 35, 3543–3559 (1994).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. J. Schwinger, “On the Euclidean Structure of Relativistic Field Theory,” Proc. Natl. Acad. Sci. 44, 956–965 (1958).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. G. A. Vilkovisky, The Gospel according to DeWitt, in S.M. Christensen (ed.), Quantum Theory of Gravity (Hilger, Bristol, 1984), pp. 169–209.

    Google Scholar 

  37. A. O. Barvinsky, Yu. V. Gusev, G. A. Vilkovisky, and V. V. Zhytnikov, “The One-Loop Effective Action and Trace Anomaly in Four-Dimensions,” Nucl. Phys. B 439, 561–582 (1995).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. A. G. Mirzabekian and G. A. Vilkovisky, “Particle Creation in the Effective Action Method,” Ann. Phys. (N.Y.) 270, 391–496 (1998).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Bureau International des Poids et Mesures. The International System of Units, 8th ed. (Sevres, France, BIPM, 2006).

  40. CODATA, prepared by P. J. Mohr, B. N. Taylor, and D. B. Newell, “CODATA Recommended Values of the Fundamental Physical Constants: 2010,” Rev. Mod. Phys. 84, 1527–1605 (2012).

    Article  ADS  Google Scholar 

  41. H. Araki, “On the Kubo-Martin-Schwinger Boundary Conditions,” Suppl. Progr. Theoret. Phys. 64, 12–20 (1978).

    Article  ADS  Google Scholar 

  42. R. Kubo, M. Yokota, and S. Nakajima, “Statistical-Mechanical Theory of Irreversible Processes. II. Response to Thermal Disturbance,” J. Phys. Soc. Japan 12, 1203–1211 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  43. P. C. Martin and J. Schwinger, “Theory of Many-Particle Systems. I,” Phys. Rev. 115, 1342–1373 (1959).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. E. S. Fradkin, “The Green’s Function Method in Quantum Statistics,” Nuclear Phys. 12(5), 465–484 (1959).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. L. S. Brown and G. J. Maclay, “Vacuum Stress between Conducting Plates: An Image Solution,” Phys. Rev. 184, 1272–1279 (1969).

    Article  ADS  Google Scholar 

  46. T. Matsubara, “A New Approach to Quantum-Statistical Mechanics,” Progr. Theoret. Phys. 14, 351–378 (1955).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. J. S. Dowker and G. Kennedy, “Finite Temperature and Boundary Effects in Static Space-Times,” J. Phys. A: Math. Gen. 11, 895–920 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  48. Yu. V. Gusev and A. I. Zelnikov, “Finite Temperature Nonlocal Effective Action for Quantum Fields in Curved Space,” Phys. Rev. D 59, 024002(12) (1998).

    Article  ADS  MathSciNet  Google Scholar 

  49. R. Penrose and W. Rindler, Spinors and Space-Time. Vol. 1. Two-Spinor Calculus and Relativistic Fields (Cambridge, Cambridge University Press, 1984), Chap. 5.

    Google Scholar 

  50. J. C. Maxwell, “On the Dynamical Theory of Gases,” Philos. Trans. R. Soc. Lond. 157, 49–88 (1867), Reprinted in V.A. Fock, Works in Quantum Field Theory (Leningrad, Leningrad University Press, 1957), pp. 141–158. English transl. in L. D. Faddeev, L. A. Khalfin, I. V. Komarov (eds.), V. A. Fock. Selected Works: Quantum Mechanics and Quantum Field Theory, 421–439 (Boca Raton, FL, Chapman & Hall/CRC, 2004).

    Article  Google Scholar 

  51. R. C. Tolman, “On the Establishment of Grand Canonical Distributions,” Phys. Rev. 57, 1160–1168 (1940).

    Article  ADS  MathSciNet  Google Scholar 

  52. R. C. Tolman, Relativity, Thermodynamics and Cosmology (Oxford, Oxford University Press, 1949).

    Google Scholar 

  53. D. Kondepudi and I. Prigogine, Modern Thermodynamics. From Heat Engines to Dissipative Structures (Chichester, Wiley, 1998).

    MATH  Google Scholar 

  54. V. P. Maslov, “Revision of Probability Theory from the Point of View of Quantum Statistics,” Russ. J. Math. Phys. 14, 66–95 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  55. V. P. Maslov, “Undistinguishing Statistics of Objectively Distinguishable Objects: Thermodynamics and Superfluidity of Classical Gas,” Math. Notes 94(5), 722–813 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  56. Yu. B. Rumer, The Investigations in 5-Optics (Moscow, GosTechIzdat, 1956) [in Russian].

    Google Scholar 

  57. Yu. B. Rumer, “Action As the Coordinate of Spacetime,” Soviet Phys. JETP 19(1), 86–94 (1949).

    MathSciNet  Google Scholar 

  58. I. Müller, “Max Planck — a Life for Thermodynamics,” Ann. Phys. (Berlin) 17(2–3), 73–87 (2008).

    Article  ADS  MATH  Google Scholar 

  59. A. Einstein, “Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt,” Annalen der Physik 17, 132–148 (1905); online as 14, 164–181 (2005), English transl. by A. B. Arons and M. B. Peppard, “Concerning an Heuristic Point of View toward the Emission and Transformation of Light,” Amer. J. Phys. 33, 367–374 (1965).

    Article  ADS  MATH  Google Scholar 

  60. A. Pais, “Einstein and the Quantum Theory,” Rev. Mod. Phys. 51, 863–914 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  61. J. E. Moyal, “Quantum Mechanics As a Statistical Theory,” Math. Proc. Cambridge Philos. Soc. 45, 99–124 (1949).

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Gusev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusev, Y.V. Finite temperature quantum field theory in the heat kernel method. Russ. J. Math. Phys. 22, 9–19 (2015). https://doi.org/10.1134/S1061920815010033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920815010033

Keywords

Navigation