Skip to main content
Log in

Forward and backward adapted quantum stochastic calculus and double product integrals

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that iterated stochastic integrals can be described equivalently either by the conventional forward adapted, or by backward adapted quantum stochastic calculus. By using this equivalence, we establish two properties of triangular (causal) and rectangular double quantum stochastic product integrals, namely a necessary and sufficient condition for their unitarity, and the coboundary relation between the former and the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chen and R. L. Hudson, “Some Properties of Quantum Lévy Area in Fock and Non-Fock Quantum Stochastic Calculus,” Probability and Mathematical Statistics 33, 425–434 (2013).

    MATH  MathSciNet  Google Scholar 

  2. P. Etingof and O. Schiffman, Lectures on quantum groups (Princeton, 1998).

    MATH  Google Scholar 

  3. F. Fagnola, “On Quantum Stochastic Differential Equations with Unbounded Coefficients,” Probability Theory and Related Fields, 86, 501–518 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  4. A. N. Holevo, “Time-Ordered Exponentials in Quantum Stochastic Calculus,” Quant. Probab. Rel. Topics. 7, 175–202 (1992).

    Article  MathSciNet  Google Scholar 

  5. R. L. Hudson, “A Double Dilation Constructed from a Double Product of Rotations,” Markov Processes and Related Fields 13 (J. T. Lewis memorial volume), 169–190 (2007).

    MATH  MathSciNet  Google Scholar 

  6. R. L. Hudson, “An Introduction to Quantum Stochastic Calculus and Some of Its Applications,” Quantum Probability Communications XI, Lectures to Summer School, Grenoble, 221–271 (1998), eds. S. Attal and J. M. Lindsay, World Scientific (2003).

    Google Scholar 

  7. R. L. Hudson, “Itô Calculus and Quantisation of Lie Bialgebras,” Annales de l’Institute H. Poincaré-PR 41 (P.-A. Meyer memorial volume), 375–390 (2005).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. R. L. Hudson, “Quantum Lévy Area as a Quantum Martingale Limit,” Quantum probability and Related Topics XXIX eds L. Accardi and F. Fagnola, World Scientific, 169–188 (2013).

    Chapter  Google Scholar 

  9. R. L. Hudson and P. D. F. Ion, “The Feynman-Kac Formula for a Canonical Quantum-Mechanical Wiener Process,” in: Random Fields (Esztergom, 1979) (North-Holland, Amsterdam-New York, 1981), 551–568.

    Google Scholar 

  10. R. L. Hudson and P. Jones, “Explicit Construction of a Unitary Double Product Integral,” Noncommutative harmonic analysis with applications to probability III, eds. M. Bo.zeko, A. Krystek and L. Wojakowski, Banach Center Publications 96, 215–236 (2012).

    MathSciNet  Google Scholar 

  11. R. L. Hudson and K. R. Parthasarathy, “Quantum Itô’s Formula and Stochastic Evolutions,” Communications in Mathematical Physics 93, 301–323 (1984).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. R. L. Hudson and Yuchen Pei, On a Causal Quantum Stochastic Double Product Integral Related to Lévy Area (in preparation).

  13. R. L. Hudson and S. Pulmannová, “Double Product Integrals and Enriquez Quantisation of Lie Bialgebras I: The Quasitriangularity Relations,” J. Math. Phys. 45, 2090–2105 (2004).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. R. L. Hudson and S. Pulmannová, “Double Product Integrals and Enriquez Quantisation of Lie Bialgebras II: The Quantum Yang-Baxter Equation,” Lett. Math. Phys. 72, 211–224 (2005).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. “A Non-Commutative Martingale Representation Theorem for Non-Fock Quantum Brownian Motion,” J. Funct. Anal. 61, 202–221 (1985).

  16. N. Ikeda and S. Taniguchi, “The Itô-Nisio Theorem, Quadratic Wiener Functionals and 1-Solitons,” Stochastic Processes and Their Applications 120, 605–621 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  17. P. Jones, Unitary Double Product Integrals as Implementors of Bogolubov Transformations (Loughborough PhD Thesis, 2014).

    Google Scholar 

  18. P. Lévy, “Le mouvement brownien plan,” Amer. Jour. Math. 62, 487–550 (1940).

    Article  Google Scholar 

  19. P. Lévy, “Wiener’s Random Function and Other Laplacian Random Functions,” Proc. 2nd Berkeley Symposium Math Statistics and Probability, 171–187 (1950), University of California Press (1951).

    Google Scholar 

  20. K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus (Birkhäuser, Basel, 1992).

    Book  MATH  Google Scholar 

  21. M. Yor, “Remarques sur une formule de Paul Lévy,” Séminaire de Probabilités XIV, Lecture Notes in Mathematics 784, 343–346 (1980).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Hudson.

Additional information

Dedicated to the memory of Slava Belavkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hudson, R.L. Forward and backward adapted quantum stochastic calculus and double product integrals. Russ. J. Math. Phys. 21, 348–361 (2014). https://doi.org/10.1134/S1061920814030078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920814030078

Keywords

Navigation