Skip to main content
Log in

A Method for Increasing the Sensitivity of Magnetoimpedance Magnetic Field Sensors

  • ELECTROMAGNETIC METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

The possibility of increasing the sensitivity of magnetoimpedance (metal) magnetic field sensors by including a high-frequency resonant circuit is considered. Various schemes of resonant circuits are presented, allowing one to increase the sensitivity of a metal magnetoimpedance sensor at a frequency of 75 MHz. The best results were obtained for a Q multiplication circuit that increases the transmission coefficient of the sensor from the external magnetic field strength from 31 to 132%/Oe with a narrowing of the bandwidth to 2.5 MHz, which results in an increase of the signal-to-noise ratio by an order of magnitude. This approach using quadrature demodulation of the signal makes it possible to distinguish signals of an alternating magnetic field with an amplitude of 1 nT with a signal-to-noise ratio of 10 dB. The proposed method can be applied for magnetoimpedance and magnetoresistive magnetic field sensors as well as for metal strain gauges during highly sensitive measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

REFERENCES

  1. Datchiki. Spravochnoe posobie (Sensors. A Reference Manual), Sharapov, V.M. and Polishchuk, E.S., Eds., Moscow: Tekhnosfera, 2012.

    Google Scholar 

  2. Balbashov, A.M. and Chervonenkis, A.Ya., Magnitnye materiali dlya mikroelektroniki (Magnetic Materials for Microelectronics), Moscow: Energiya, 1979.

  3. Vazquez, M., Giant magneto-impedance in soft magnetic wires, J. Magn. Magn. Mater., 2001, vol. 226, pp. 693–699.

    Article  Google Scholar 

  4. Kurlyandskaya, G.V., Volchkov, S.O., and de Kos, D., Magnetosensitive transducers for nondestructive testing operating on the basis of the giant magnetoimpedance effect: A review, Russ. J. Nondestr. Test., 2009, vol. 45, no. 6, pp. 377–398.

    Article  Google Scholar 

  5. Sysoeva, S., Magnetic field sensors. Key technologies and new prospects. Part 3. XMR (AMR/GMR/TMR)—competitors of Hall sensors, Kompon. Tekhnol., 2014, no. 8, pp. 49–62.

  6. Margelov, A., Modular and component Honeywell magnetoresistive sensors and compasses, Nov. Elektron., 2006, vol. 10, pp. 10–14.

    Google Scholar 

  7. Shcherbinin, S.V., Volchkov, S.O., Chlenova, A.A., and Kurlyandskaya, G.V., Load matching for giant magnetoimpedance sensor in coaxial configuration, Key Eng. Mater., 2019, vol. 826, pp. 19–24.

    Article  Google Scholar 

  8. Le Anh-Tuan and Phan Manh-Huong, Advanced magnetic microwires as sensing elements for LC-resonant-type magnetoimpedance sensor: A comprehensive review, J. Supercond. Novel Magn., 2012, vol. 25, pp. 181–195.

    Article  Google Scholar 

  9. Nie Xinhua and Pan Zhongming, Differential-type Integrating GMI magnetic sensor based on orthogonal vector lock-in amplifier, Chin. Autom. Congr. (Changsha, 2013), pp. 344–347. https://doi.org/10.1109/CAC.2013.6775756

  10. UNIVAC 9000 Series. Facts and Figures, New York: Sperry Rand, 1969.

  11. Beach, R.S., Smith, N., Platt, C.L., Jeffers, F., and Berkowitz, A.E., Magneto-impedance effect in NiFe plated wire, Appl. Phys. Lett., 1996, vol. 68, p. 2753.

    Article  CAS  Google Scholar 

  12. http://www.spectrum-soft.com.

  13. Gorshelev, V.D., Krasnotsvetova, Z.G., and Fedortsov, B.F., Osnovy proektirovaniya radiopriemnikov (Fundamentals of Radio Receiver Design), Leningrad: Energiya, 1977.

  14. Atalay, S., Izgi, T., Buznikov, N.A., and Kolat, V.S., Asymmetric giant magnetoimpedance effect created by micro magnets, J. Magn. Magn. Mater., 2018, vol. 453, pp. 163–167.

    Article  CAS  Google Scholar 

  15. E20-10. USB 2.0 ADC module. User Manual, Moscow: CJSC L-Card, 2008.

  16. Yarushin, K.A., Shcherbinin, S.V., and Kurlyandskaya, G.V., DDS control and magneto-impedance sensor signal lock-in amplifier data reading program, VII Int. Res. Conf. Phys. Technol. Innov., AIP Conf. Proc., 2020, vol. 2313, p. 040022.

  17. Uchiyama, T., Mohri, K., Honkura, Y., and Panina, L.V., Recent advances of pico-Tesla resolution magnetoimpedance sensor based on amorphous wire CMOS IC MI sensor, IEEE Trans. Magn., 2012, vol. 48, no. 11, pp. 3833–3839.

    Article  Google Scholar 

  18. Reutov, Yu.Ya., A sensitive fluxgate magnetometer, Russ. J. Nondestr. Test., 2008, vol. 44, no. 6, pp. 386–390.

    Article  Google Scholar 

  19. Golubeva, E.V., Volchkov, S.O., Shcherbinin, S.V., and Kurlandskaya, G.V., Magnetoimpedance properties of amorphous CoFeSiB wires in a wide frequency range: focus on sensor applications, Russ. J. Nondestr. Test., 2018, vol. 54, no. 10, pp. 717–725.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-48-660044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Shcherbinin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbinin, S.V., Beketov, I.V. & Yarushin, K.A. A Method for Increasing the Sensitivity of Magnetoimpedance Magnetic Field Sensors. Russ J Nondestruct Test 58, 1118–1128 (2022). https://doi.org/10.1134/S1061830922700127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830922700127

Keywords:

Navigation