Skip to main content
Log in

Features of Behavior of Magnetic Properties during Elastic Deformation of 20GN Hull Steel in Various Initial Stress–Strain States

  • ELECTROMAGNETIC METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

We present the results of studying the behavior of magnetic properties, including longitudinal magnetostriction, of 20GN hull steel samples predeformed plastically by stretching to various degrees (up to 17.5%) under conditions of subsequent elastic uniaxial stretching. It is shown that the parameters of magnetic hysteresis considered in this paper change nonmonotonically with the increase of applied stresses with the formation of extrema. The values of the applied stresses at which these extrema are formed depend on the level of residual compression stresses induced by preliminary plastic stretching along the direction of its action. The results of measurements of the dependences of differential magnetic permeability and magnetostriction on the magnetic field strength in the studied samples are compared. The values of applied stresses at which the sign of magnetostriction of plastically predeformed samples changes during subsequent elastic deformation are experimentally determined; it is shown that these values coincide with the values of stresses when the extrema of the functions of the maxima of field dependence of the differential magnetic permeability on the tensile load are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Muzhitskii, V.F., Sultanov, M.H., Zagidulin, R.V., and Makarov, P.S., A multiparameter method for assessing the stress-strain state of steel products and pipelines, Kontrol’ Diagn., 2006, no. 8, pp. 17–22.

  2. Kostin, V.N., Vasilenko, O.N., Filatenkov, D.Y., Chekasina, Y.A., and Serbin, E.D., Magnetic and magnetoacoustic testing parameters of the stressed–strained state of carbon steels that were subjected to a cold plastic deformation and annealing, Russ. J. Nondestr. Test., 2015, vol. 51, no. 10, pp. 624–632.

    Article  CAS  Google Scholar 

  3. Murav’ev, V.V., Volkova, L.V., Platunov, A.V., and Kulikov, V.A., An electromagnetic–acoustic method for studying stress-strain states of rails, Russ. J. Nondestr. Test., 2016, vol. 52, no. 7, pp. 370–376.

    Article  Google Scholar 

  4. Kostin, V.N., Tsar’kova, T.P., Loskutov, V.E., Kostin, K.V., Nichipuruk, A.P., and Lopatin, V.V., Irreversible changes in the magnetization as indicators of stressed-strained state of ferromagnetic objects, Russ. J. Nondestr. Test., 2009, vol. 45, no. 11, pp. 786–796.

    Article  CAS  Google Scholar 

  5. Chen, H.-E., Xie, S., Chen, Z., Takagi, T., Uchimoto, T., and Yoshihara, K., Quantitative nondestructive evaluation of plastic deformation in carbon steel based on electromagnetic methods, Mater. Trans., 2014, vol. 55, no. 12, pp. 1806–1815.

    Article  CAS  Google Scholar 

  6. Gorkunov, E.S., Povolotskaya, A.M., Zadvorkin, S.M., Putilova, E.A., Mushnikov, A.N., Bazulin, E.G., and Vopilkin, A.H., Some features in the behavior of magnetic and acoustic characteristics of hot-rolled 08G2B steel under cyclic loading, Russ. J. Nondestr. Test., 2019, vol. 55, no. 11, pp. 827–836.

    Article  CAS  Google Scholar 

  7. Vengrinovich, V., Vintov, D., Prudnikov, A., Podugolnikov, P., and Ryabtsev, V., Magnetic Barkhausen effect in steel under biaxial strain/stress: Influence on stress measurement, J. Nondestr. Eval., 2019, vol. 38, article 52. https://doi.org/10.1007/s10921-019-0576-7

    Article  Google Scholar 

  8. Roskosz, M. and Fryczowski, K., Magnetic methods of characterization of active stresses in steel elements, J. Magn. Magn. Mater., 2020, vol. 499, p. 166272.

    Article  CAS  Google Scholar 

  9. Stefanita, C.G., Atherton, D.L., and Clapham, L., Plastic versus elastic deformation effects on magnetic Barkhausen noise in steel, Acta Mater., 2000, vol. 48, no. 13, pp. 3545–3551.

    Article  CAS  Google Scholar 

  10. Gorkunov, E.S., Povolotskaya, A.M., Zadvorkin, S.M., Putilova, E.A., and Mushnikov, A.N., The effect of cyclic preloading on the magnetic behavior of the hot-rolled 08G2B steel under elastic uniaxial tension, Res. Nondestr. Eval., 2021, vol. 32, no. 6, pp. 276–294.

    Article  Google Scholar 

  11. Mierczak, L.L., Jiles, D.C., and Fantoni, G., A new method for evaluation of mechanical stress using the reciprocal amplitude of magnetic Barkhausen noise, IEEE Trans. Magn., 2011, vol. 47, no. 2, pp. 459–465.

    Article  Google Scholar 

  12. Perevertov, O., Influence of the applied elastic tensile and compressive stress on the hysteresis curves of Fe-3%Si non-oriented steel, J. Magn. Magn. Mater., 2017, vol. 428, pp. 223–228. https://doi.org/10.1016/j.jmmm.2016.12.040

    Article  CAS  Google Scholar 

  13. Gorkunov, E.S., Povoltskaya, A.M., Solov’ev, K.E., and Zadvorkin, S.M., The influence of the magnetoelastic effect on the hysteretic properties of medium-carbon steel during uniaxial loading, Russ. J. Nondestr. Test., 2010, vol. 46, no. 9, pp. 638–644.

    Article  CAS  Google Scholar 

  14. Gorkunov, E.S., Subachev, Y.V., Povolotskaya, A.M., and Zadvorkin, S.M., The influence of a preliminary plastic deformation on the behavior of the magnetic characteristics of high-strength controllably rolled pipe steel under an elastic uniaxial tension (compression), Russ. J. Nondestr. Test., 2015, vol. 51, no. 9, pp. 563–572.

    Article  CAS  Google Scholar 

  15. Gorkunov, E.S., Povolotskaya, A.M., Zadvorkin, S.M., and Putilova, E.A., Comparative analysis of the magnetic characteristics of plastically deformed metal in different zones of a welded pipe under elastic deformation, Russ. J. Nondestr. Test., 2017, vol. 53, no. 9, pp. 636–643.

    Article  CAS  Google Scholar 

  16. Kuleev, V.G. and Tsar’kova, T.P., Effect of plastic deformations and heat treatment on the behavior of the coercive force under load, Phys. Metals Metallogr., 2007, vol. 104, no. 5, pp. 461–468.

    Article  Google Scholar 

  17. Kuleev, V.G. and Tsar’kova, T.P., The effect of the plastic tension of steels on the dependences of the coercive force on elastic compressive stresses, Russ. J. Nondestr. Test., 2014, vol. 50, no. 2, pp. 80–91.

    Article  CAS  Google Scholar 

  18. Povolotskaya, A.M. and Mushnikov, A.N., Effect of plastic deformation on the magnetic parameters and magnetostriction of the 20GN steel, Proc. Struct. Integrity, 2022, vol. 40, pp. 359–364. https://doi.org/10.1016/j.prostr.2022.04.048

    Article  Google Scholar 

  19. Anderson, P.I., Moses, A.J., and Stanbury, H.J., Assessment of the stress sensitivity of magnetostriction in grain-oriented silicon steel, IEEE Trans. Magn., 2007, vol. 43, pp. 3467–3476. https://doi.org/10.1109/TMAG.2007.893534

    Article  CAS  Google Scholar 

  20. Gorkunov, E.S., Subachev, Y.V., Povolotskaya, A.M., and Zadvorkin, S.M., The influence of an elastic uniaxial deformation of a medium-carbon steel on its magnetostriction in the longitudinal and transverse directions, Russ. J. Nondestr. Test., 2013, vol. 49, no. 10, pp. 584–594.

    Article  Google Scholar 

  21. Dias, M.B.S. and Landgraf, F.J.G., Compressive stress effects on magnetic properties of uncoated grain oriented electrical steel, J. Magn. Magn. Mater., 2020, vol. 504, p. 166566. https://doi.org/10.1016/j.jmmm.2020.166566

    Article  CAS  Google Scholar 

  22. Wun-Fogle, M., Restorff, J.B., Cuseo, J.M., Garshelis, I.J., and Bitar, S., Magnetostriction and magnetization of common high strength steels, IEEE Trans. Magn., 2009, vol. 45, no. 10, pp. 4112–4115.

    Article  CAS  Google Scholar 

  23. Makar, J.M. and Tanner, B.K., The effect of plastic deformation and residual stress on the permeability and magnetostriction of steels, J. Magn. Magn. Mater., 2000, vol. 222, no. 3, pp. 291–304.

    Article  CAS  Google Scholar 

  24. Kuleev, V.G. and Gorkunov, E.S., Mechanisms of the influence of internal and external stresses on the coercive force of ferromagnetic steels, Defektoskopiya, 1997, no. 11, pp. 3–18.

  25. Kuleev, V.G., Tsar’kova, T.P., Sazhina, E.Y., and Doroshek, A.S., On the influence of plastic deformations of low-carbon ferromagnetic steels on the changes in the shapes of their hysteresis loops and the field dependences of the differential permeability, Russ. J. Nondestr. Test., 2015, vol. 51, no. 12, pp. 738–749.

    Article  CAS  Google Scholar 

  26. Kuleev, V.G., Tsar’kova, T.P., and Sazhina, E.Y., Effect of transitions of domain boundaries in plastically deformed steels on their residual magnetization, Russ. J. Nondestr. Test., 2016, vol. 52, no. 12, pp. 745–752.

    Article  CAS  Google Scholar 

  27. Stashkov, A., Nichipuruk, A., Kuleev, V., and Schapova, E., Magnetic non-destructive testing of residual stresses in low carbon steels, J. Phys.: Conf. Ser., 2019, vol. 1389, p. 012032.

    CAS  Google Scholar 

  28. Leuning, N., Steentjes, S., Schulte, M., Bleck, W., and Hameyer, K., Effect of elastic and plastic tensile mechanical loading on the magnetic properties of NGO electrical steel, J. Magn. Magn. Mater., 2016, vol. 417, pp. 42–48. https://doi.org/10.1016/j.jmmm.2016.05.049

    Article  CAS  Google Scholar 

  29. M’zali, N., Martin, F., Aydin, U., Belahcen, A., Benabou, A., and Henneron, T., Determination of stress dependent magnetostriction from a macroscopic magneto-mechanical model and experimental magnetization curves, J. Magn. Magn. Mater., 2020, vol. 500, p. 166299. https://doi.org/10.1016/j.jmmm.2019.166299

    Article  CAS  Google Scholar 

  30. Yamasaki, T., Yamamoto, S., and Hirao, M., Effect of applied stresses on magnetostriction of low carbon steel, NDT & E Int., 1996, vol. 29, no. 5, pp. 263–268. https://doi.org/10.1016/S0963-8695(96)00028-X

    Article  CAS  Google Scholar 

  31. Makar, J.M. and Tanner, B.K., The in situ measurement of the effect of plastic deformation on the magnetic properties of steel. Part I—Hysteresis loops and magnetostriction, J. Magn. Magn. Mater., 1998, vol. 184, no. 2, pp. 193–208. https://doi.org/10.1016/S0304-8853(97)01129-3

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out within the framework of the state assignment of the Ministry of Education and Science of the Russian Federation on topics no. AAAAA18-118020790148-1 and “Diagnostics,” no. 122021000030-1. This work was carried out using the equipment of the Plastometry Shared Services Center at the Institute of Engineering Science of the Ural Branch of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Povolotskaya or A. N. Mushnikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Povolotskaya, A.M., Mushnikov, A.N. Features of Behavior of Magnetic Properties during Elastic Deformation of 20GN Hull Steel in Various Initial Stress–Strain States. Russ J Nondestruct Test 58, 1000–1010 (2022). https://doi.org/10.1134/S1061830922700073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830922700073

Keywords:

Navigation