Skip to main content
Log in

Ultrasonic Testing of Welds in Thin-Walled Titanium Shells Using an Incomplete Penetration Indicator

  • ACOUSTIC METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

We consider the procedure of ultrasonic quality control of weld seams in thin-walled titanium-alloy shells with a thickness of 0.6 mm. Publications devoted to the excitation and propagation of Lamb waves and practical problems of ultrasonic inspection of thin-walled products are reviewed. The problem of detecting adhesions (areas of a weld seam with lack of penetration that conduct ultrasonic waves well but do not provide mechanical strength) is solved. It is proposed to use a corner groove as an indicator of lack of penetration in the weld. The propagation of different modes of Lamb waves in the material is analyzed, and the optimal testing parameters are selected. High information content of the signal is achieved using wavelet analysis and fine-pitch precision digital filters. Defectograms of a weld containing defective and defect-free areas are analyzed. The results of ultrasound scanning are compared with metallography data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Bergmann, L., Der Ultraschall und seine Anwendung in Wissenschaft und Technik, Zürich, 1954.

  2. Viktorov, I.A., Fizicheskie osnovy primeneniya ul’trazvukovykh voln Releya i Lemba v tekhnike (Physical Foundations of Application of Rayleigh and Lamb Ultrasonic Waves in Technology), Moscow: Nauka, 1966.

  3. Brekhovskikh, L.M., Volny v sloistykh sredakh (Waves in Layered Media), Moscow: Nauka, 1973.

  4. Vinogradova, M.B., Rudenko, O.V., and Sukhorukiy, A.P., Teoriya voln (Wave theory), Moscow: Nauka, 1979.

  5. Kino, S., Acoustic Waves, Englewood Cliffs, NJ: Prentice-Hall, 1987.

  6. Krautkremer, I. and Krautkremer, G., Ul’trazvukovoi kontrol’ materialov (Ultrasonic Inspection of Materials), Moscow: Metallurgiya, 1991.

  7. Shcherbinskii, V.G. and Aleshin, N.P., Ul’trazvukovoi kontrol’ svarnykh soedinenii (Ultrasonic Testing of Welded Joints), Moscow: Izd. Mosk. Gos. Tekh. Univ. im. N.E. Bauman, 2000, 3rd ed.

  8. Nerazrushayuschiy kontrol’. Spravochnik v 8 tomakh (Nondestructive Testing—A Handbook in Eight Volumes), Klyuev, V.V., Ed., Moscow: Mashinostroenie, 2008, vol. 3.

  9. Deryabin, A.A., Development of criteria for assessing the types of defects in welded joints of thin-walled pipes by Lamb waves, Cand. Sci. (Eng.) Dissertation, Moscow: Bauman Moscow State Technical University, 2008.

  10. Loshitskii, A.R., Theoretical studies of the propagation of Lamb waves in elastic plates, Cand. Sci. (Eng.) Dissertation, Moscow: ZAO TsNIIOMTP, 2001.

  11. Korobov, A.I. and Izosimova, M.Yu., Nonlinear Lamb waves in a metal plate with defects, Acoust. Phys., 2006, vol. 52, no. 5, pp. 589–597.

    Article  Google Scholar 

  12. Kuznetsov, S.V., Lamb waves in anisotropic plates (review), Acoust. Phys., 2014, vol. 60, no. 1, pp. 95–103.

    Article  Google Scholar 

  13. Il’yashenko, A.V. and Kuznetsov, S.V., Theoretical Aspects of Applying Lamb Waves in Nondestructive Testing of Anisotropic Media, Russ. J. Nondestr. Test., 2017, vol. 53, no. 4, pp. 243–259.

    Article  Google Scholar 

  14. Perov, D.V. and Rinkevich, A.B., Localization of reflectors in plates by ultrasonic testing with lamb waves, Russ. J. Nondestr. Test., 2017, vol. 53, no. 4, pp. 265–278.

    Article  Google Scholar 

  15. Burkov, M.V., Eremin, A.V., Lyubutin, P.S., Byakov, A.V., and Panin, S.V., Applying an ultrasonic Lamb wave based technique to testing the condition of V96ts3T12 aluminum alloy, Russ. J. Nondestr. Test., 2017, vol. 53, no. 12, pp. 817–829.

    Article  CAS  Google Scholar 

  16. Kazakov, V.V., Detection and determination of the position of a crack in a plate by a nonlinear modulation method using Lamb waves, Izv. Vyssh. Uchebn. Zaved. Radiofiz., 2018, vol. 61, no. 7, pp. 555–565.

    Google Scholar 

  17. Burkov, M.V., Lyubutin, P.S., and Byakov, A.V., Lamb wave ultrasonic detection of barely visible impact damages of CFRP, Russ. J. Nondestr. Test., 2019, vol. 55, no. 2, pp. 89–101.

    Article  Google Scholar 

  18. Aversheva, A.V. and Kuznetsov, S.V., Numerical modeling of the propagation of Lamb waves in an isotropic layer, Int. J. Comput. Civ. Struct. Eng., 2019, vol. 15, no. 2, pp. 14–23.

    Google Scholar 

  19. Barkhatov, V.A., Development of methods of ultrasonic nondestructive testing of welded joints, Russ. J. Nondestr. Test., 2003, vol. 39, no. 1, pp. 23–47.

    Article  Google Scholar 

  20. Aleshin, N.P. and Deryabin, A.A., Development of criteria for assessing the types of defects in welded joints of thin-walled pipes by Lamb waves, Kontrol’. Diagn., 2008, no. 2, pp. 30–33.

  21. Burkin, S.P., Serebryakov, A.V., Markov, A.D., and Serebryakov, A.V., Improvement of the technique of ultrasonic testing of small-diameter pipes, Zavod. Lab., Diagn. Mater., 2012, vol. 78, no. 12, pp. 45–49.

    Google Scholar 

  22. Deryabin, A.A., Remizov, A.L., and Prilutsky, M.A., Solid-state model of diffraction of Lamb waves in the presence of crack-like defects, Aktual. Probl. Gumanitarnykh Estestv. Nauk., 2013, no. 11-1, pp. 98–106.

  23. Deryabin, A.A., Remizov, A.L., and Prilutsky, M.A., Solid-state model of diffraction of Lamb waves in the presence of volumetric defects, Aktual. Probl. Gumanitarnykh Estestv. Nauk., 2013, no. 12-1, pp. 77–82.

  24. Burkov, M.V., Panin, S.V., Byakov, A.V., Lyubutin, P.S., and Eremin, A.V., Application of the ultrasonic method using Lamb waves for monitoring the state of aluminum alloys. Part 1. Static mechanical tests, Izv. Vyssh. Uchebn. Zaved. Fiz., 2015, vol. 58, no. 6-2, pp. 25–30.

  25. Burkov, M.V., Panin, S.V., Byakov, A.V., Lyubutin, P.S., and Eremin, A.V., Application of the ultrasonic method using Lamb waves for monitoring the state of aluminum alloys. Part 2. Cyclic mechanical tests, Izv. Vyssh. Uchebn. Zaved. Fiz., 2015, vol. 58, no. 6-2, pp. 31–35.

  26. Kopytov, D.V., Kuznetsov, M.N., Babenkov, M.V., and Gurevich, D.V., Experience in the use of ultrasonic scanning using Lamb waves when inspecting the bottoms of tanks, Avtom., Telemekh. Svyaz Neft. Prom-sti., 2015, no. 12, pp. 4–6.

  27. Murav’eva, O.V. and Murav’ev, V.V., Methodological peculiarities of using SH- and Lamb waves when assessing the anisotropy of properties of flats, Russ. J. Nondestr. Test., 2016, vol. 52, no. 7, pp. 363–369.

    Article  Google Scholar 

  28. Murav’ev, V.V., Murav’ieva, O.V., and Volkova, L.V., Influence of anisotropy of mechanical properties of thin-rolled steel rolled stock on informative parameters of Lamb waves, Stal’, 2016, no. 10, pp. 75–79.

  29. Evdokimov, A.A., Distribution and motion of the roots of the dispersion equation for Lamb waves in the complex plane, Ekol. Vestn. Nauchn. Tsentrov. Chern. Ekon. Sodruzhestva, 2017, no. 3, pp. 30–37.

  30. Nirbhay, M., Dixit, A., and Misra, R.K., Finite element modelling of Lamb waves propagation in 3D plates and brass tubes for damage detection, Russ. J. Nondestr. Test., 2017, vol. 53, no. 4, pp. 308–329.

    Article  Google Scholar 

  31. Iskhuzhin, R.R. and Atavin, V.G., Determination of the optimal angle of excitation of Lamb waves using a phased antenna array, XXI Vserossiiskaya konferentsiya po nerazrushayuschemu kontrolyu I tekhnicheskoi diagnostike: sbornik trudov (XXI All-Russ. Conf. Nondestr. Test. Tech. Diagn. Proc.), Moscow: Spektr, 2017.

  32. Gurevich, S.Yu., Petrov, Yu.V., and Golubev, E.V., Thickness gauging of thin metalware with ultrasound excited by laser nanopulses, Russ. J. Nondestr. Test., 2018, vol. 54, no. 3, pp. 147–150.

    Article  CAS  Google Scholar 

  33. Ze-Yu Don, Hai-Tao Wang, Xian-Ming Yang, Xin Li, Jun Shu, and Meng Hao Jiang, Research for evaluation method based on Lamb waves for thickness of ship deck beams, Russ. J. Nondestr. Test., 2020, vol. 56, no. 7, pp. 556–565.

    Article  Google Scholar 

  34. Grigorievsky, V.I., Kozlov, A.I., Plessky, V.P., and Tereshkov, V.P., Calculation of dispersion curves of Lamb modes in YZ-cut lithium niobate plates, Akust. Zh., 1985, vol. 37, no. 1, pp. 42–44.

    Google Scholar 

  35. Barkhatov, V.A., Solution of the one-dimensional inverse acoustic problem with allowance for velocity dispersion and frequency-dependent wave attenuation, Russ. J. Nondestr. Test., 2009, vol. 45, no. 1, pp. 29–39.

    Article  Google Scholar 

  36. Terent’ev, D.A. and Popkov, Y.S., Determination of the parameters of the dispersion curves of Lamb waves with the use of the Hough transform of the spectrogram of an AE signal, Russ. J. Nondestr. Test., 2014, vol. 50, no. 1, pp. 19–28.

    Article  Google Scholar 

  37. Zakharov, D.D., Parametric analysis of complex dispersion curves for flexural Lamb waves in layered plates in the low-frequency range, Acoust. Phys., 2018, vol. 64, no. 4, pp. 387–401.

    Article  Google Scholar 

  38. Hu, Y., Zhu, Y., Tu, X., Lu, J., and Li, F., Dispersion curve analysis method for Lamb wave mode separation, Struct. Health Monit., 2020, vol. 19, no. 5, pp. 1590–1601. https://doi.org/10.1177/1475921719890590

    Article  Google Scholar 

  39. Zima, B. and Kedra, R., Numerical study of concrete mesostructure effect on lamb wave propagation, Materials, 2020, vol. 13, no. 11. https://doi.org/10.3390/ma13112570

  40. Zhang, Y., Qian, Z., and Wang, B., Modes control of Lamb wave in plates using meander-line electromagnetic acoustic transducers, Appl. Sci. (Switzerland), 2020, vol. 10, no. 10. https://doi.org/10.3390/app10103491

  41. Iskhuzhin, R. R., Borisov, V. N., Atavin, V. G., Uzkikh, A. A., and Khafizova, K. K., Ultrasonic testing of thinwalled titanium weld joint with adhesion detector, J. Phys.: Conf. Ser., vol. 1636. https://doi.org/10.1088/1742-6596/1636/1/012004

  42. Gao, F., Wang, L., Hua, J., Lin, J., and Mal, A., Application of Lamb wave and its coda waves to disband detection in an aeronautical honeycomb composite sandwich, Mech. Syst. Sign. Proc., 2021, vol. 146, p. 107063. https://doi.org/10.1016/j.ymssp.2020.107063

    Article  Google Scholar 

  43. He, J., Huo, H., Guan, X., and Yang, J., A Lamb wave quantification model for inclined cracks with experimental validation, Chin. J. Aeronaut., 2020. https://doi.org/10.1016/j.cja.2020.02.010

  44. Hua, J., Cao, X., Yi, Y., and Lin, J., Time-frequency damage index of Broadband Lamb wave for corrosion inspection, J. Sound Vib., vol. 464, p. 114985. https://doi.org/10.1016/j.jsv.2019.114985

  45. Zhang, Z., Pan, H., Wang, X., and Lin, Z., Machine learning-enriched lamb wave approaches for automated damage detection, Sensors (Switzerland), 2020, no. 20 (6), p. 1790. https://doi.org/10.3390/s20061790

  46. Zhu, W.G., Li, Y.F., Guan, L.Q., Wan, X.L., Yu, H.Y., and Liu, X.Z., Micro-crack detection of nonlinear Lamb wave propagation in three-dimensional plates with mixed-frequency excitation, Chin. Phys. B, vol. 29, no. 1, p. 014302. https://doi.org/10.1088/1674-1056/ab5931

  47. Jiao, P., Egbe, K.-J.I., Xie, Y., Matin Nazar, A., and Alavi, A.H., Piezoelectric sensing techniques in structural health monitoring: a state-of-the-art review, Sensors (Switzerland), 2020, vol. 20, no. 13, p. 3730. https://doi.org/10.3390/s20133730

    Article  CAS  Google Scholar 

  48. Rébillat, M. and Mechbal, N., Damage localization in geometrically complex aeronautic structures using canonical polyadic decomposition of Lamb wave difference signal tensors, Struct. Health Monit., 2020, vol. 19, no. 1, pp. 305–321. https://doi.org/10.1177/1475921719843453

    Article  Google Scholar 

  49. Wan, T., Chang, J., Zeng, X., and Li, Y., Damage identification and scanning imaging of glass fiber reinforced polymer composite plates based on empirical mode decomposition and correlation coefficient. Fuhe Cailiao Xuebao, Acta Mater. Compos. Sin., 2020, vol. 37, no. 8, pp. 1921–1931. https://doi.org/10.13801/j.cnki.fhclxb.20191031.003

    Article  Google Scholar 

  50. Fromme, P., Guided wave sensitivity prediction for part and through-thickness crack-like defects, Struct. Health Monit., 2020, vol. 19, no. 3, pp. 953—963. https://doi.org/10.1177/1475921719892205

    Article  Google Scholar 

  51. Liu, B., Liu, T., Zhao, J., and Hang, D., Frequency Aliasing-Based Spatial-Wavenumber Filter for Online Damage Monitoring, Shock Vib., 2020. https://doi.org/10.1155/2020/8856241

  52. Xiao, W., Yu, L., Joseph, R., and Giurgiutiu, V., Fatigue-crack detection and monitoring through the scattered wave two-dimensional cross-correlation imaging method using piezoelectric transducers, Sensors (Switzerland), 2020, vol. 20, no. 11, p. 3035. https://doi.org/10.3390/s20113035

    Article  CAS  Google Scholar 

  53. Hu, C., Yang, B., Xuan, F. Z., Yan, J., and Xiang, Y., Damage orientation and depth effect on the guided wave propagation behavior in 30CrMo steel curved plates, Sensors (Switzerland), 2020, vol. 20, no. 3, p. 849. https://doi.org/10.3390/s20030849

    Article  Google Scholar 

  54. Chen, B., Wang, C., Wang, P., Zheng, S., and Sun, W., Research on fatigue damage in high-strength steel (FV520B) using nonlinear ultrasonic testing, Shock Vib., 2020. https://doi.org/10.1155/2020/8847704

  55. Ewald, V., Groves, R., and Benedictus, R., Integrative approach for transducer positioning optimization for ultrasonic structural health monitoring for the detection of deterministic and probabilistic damage location, Struct. Health Monit., 2020. https://doi.org/10.1177/1475921720933172

  56. Serey, V., Quaegebeur, N., Renier, M., Micheau, P., Masson, P., and Castaings, M., Selective generation of ultrasonic guided waves for damage detection in rectangular bars, Struct. Health Monit., 2020. https://doi.org/10.1177/1475921720947407

  57. Nicassio, F., Carrino, S., and Scarselli, G., Non-linear Lamb Waves for Locating Defects in Single-Lap Joints, Front. Built Env., 2020, no. 6 (45). https://doi.org/10.3389/fbuil.2020.00045

  58. Dafydd, I. and Sharif Khodaei, Z., Analysis of barely visible impact damage severity with ultrasonic guided Lamb waves, Struct. Health Monit., 2020, vol. 19, no. 4, pp. 1104–1122. https://doi.org/10.1177/1475921719878850

    Article  Google Scholar 

  59. Li, J., Sharif Khodaei, Z., and Aliabadi, M. H., Boundary element modelling of ultrasonic Lamb waves for structural health monitoring, Smart Mater. Struct., 2020, vol. 29, no. 10, p. 105030. https://doi.org/10.1088/1361-665x/aba6ce

    Article  Google Scholar 

  60. Liu, Y., He, A., Liu, J., Mao, Y., and Liu, X., Location of micro-cracks in plates using time reversed nonlinear Lamb waves, Chin. Phys. B., 2020, vol. 29, no. 5, https://doi.org/10.1088/1674-1056/ab81f7

  61. Xu, C., Yang, Z., Qiao, B., and Chen, X., A parameter estimation based sparse representation approach for mode separation and dispersion compensation of Lamb waves in isotropic plate, Smart Mater. Struct., 2020, vol. 29, no. 3, p. 035020. https://doi.org/10.1088/1361-665x/ab6ce7

    Article  Google Scholar 

  62. Chen, X. and Ni, L., Mode separation for multimode Lamb waves overlapped in time and frequency domains by using fractional differential. Shengxue Xuebao, Acta Acustica, 2020, vol. 45, no. 2, pp. 205–214. https://doi.org/10.7498/aps.67.20180561

    Article  CAS  Google Scholar 

  63. He, C., Ren, Z., Lyu, Y., Gao, J., Wang, S., and Song, G., Reflection/transmission characteristics based on Legendre orthogonal polynomial method, Beijing Hangkong Hangtian Daxue Xuebao, 2020, vol. 46, no. 7, pp. 1258–1266. https://doi.org/10.13700/j.bh.1001-5965.2019.0434

    Article  Google Scholar 

  64. Attar, L., Leduc, D., Ech Cherif El Kettani, M., Predoi, M. V., Galy, J., and Pareige, P., Detection of the degraded interface in dissymmetrical glued structures using Lamb waves, NDT & E Int., 2020, vol. 111. p. 102213. https://doi.org/10.1016/j.ndteint/2019/102213

    Article  CAS  Google Scholar 

  65. Ismail, N., Hafizi, Z.M., Nizwan, C.K.E., and Ali, S., Interactions of Lamb waves with defects in a thin metallic plate using the finite element method, in Advances in Mechatronics, Manufacturing, and Mechanical Engineering. Lecture Notes in Mechanical Engineering, Zakaria, M., Abdul Majeed, A., and Hassan, M., Eds., Singapore: Springer, 2021. https://doi.org/10.1007/978-981-15-7309-5_19

  66. Tie, Y., Zhang, Q., Hou, Y., and Li, C., Impact damage assessment in orthotropic CFRP laminates using nonlinear Lamb wave: Experimental and numerical investigations, Compos. Struct., 2020. https://doi.org/10.1016/j.compstruct.2020.111869

  67. Chen, H., Zhang, G., Fan, D., Fang, L., and Huang, L., Nonlinear Lamb wave analysis for microdefect identification in mechanical structural health assessment. Measurement, J. Int. Measur. Confed., 2020, vol. 164, p. 108026. https://doi.org/10.1016/j.measurement.2020.108026

    Article  Google Scholar 

  68. Zhou, K., Xu, X., and Wu, Z., Damage detection with single mode lamb wave based on piezoelectric transducers, Yadian Yu Shengguang, 2020, vol. 42, no. 1, pp. 38–41. https://doi.org/10.11977/j.issn.1004-2474.2020.01.010

    Article  Google Scholar 

  69. Haider, M. F., Joseph, R., Giurgiutiu, V., and Poddar, B., An efficient analytical global–local (AGL) analysis of the Lamb wave scattering problem for detecting a horizontal crack in a stiffened plate, Acta Mechanica, 2020, vol. 231, no. 2, pp. 577–596. https://doi.org/10.1007/s00707-019-02555-z

    Article  Google Scholar 

  70. Liu, H., and Zhang, Y., Deep learning based crack damage detection technique for thin plate structures using guided lamb wave signals, Smart Mater. Struct., 2020, vol. 29, no. 1, p. 015032. https://doi.org/10.1088/1361-665X/ab58d6

    Article  CAS  Google Scholar 

  71. Borate, P., Wang, G., and Wang, Y., Data-driven structural health monitoring approach using guided Lamb wave responses, J. Aerosp. Eng., 2020, vol. 33, no. 4, https://doi.org/10.1061/(ASCE)AS.1943-5525.0001145

  72. Jia, H., Liu, H., Zhang, Z., Dai, F., Liu, Y., and Leng, J., A baseline-free approach of locating defect based on mode conversion and the reciprocity principle of Lamb waves, Ultrasonics, 2020, vol. 102. https://doi.org/10.1016/j.ultras.2020.106063

  73. Tai, S., Kotobuki, F., Wang, L., and Mal, A., Modeling Ultrasonic Elastic Waves in Fiber-Metal Laminate Structures in Presence of Sources and Defects, J. Nondestr. Eval. Diagn. Progn. Eng. Syst., 2020, vol. 3, no. 4. https://doi.org/10.1115/1.4046946

  74. Bahador, M. M., Zaimbashi, A., and Rahgozar, R., Three-stage Lamb-wave-based damage localization algorithm in plate-like structures for structural health monitoring applications, Sign. Process., 2020, vol. 168. https://doi.org/10.1016/j.sigpro.2019.107360

  75. Wang, X., Xiang, Y., Zhu, W. J., Ding, T. T., and Li, H. Y., Damage assessment in Q690 high strength structural steel using nonlinear Lamb waves, Constr. Build. Mat., 2020, vol. 234. https://doi.org/10.1016/j.conbuildmat.2019.117384

  76. Purcel,l F.A., Eaton, M., Pearson, M.R., and Pullin, R., Non-destructive evaluation of isotropic plate structures by means of mode filtering in the frequency-wavenumber domain, Mech. Syst. Sign. Process., 2020, vol. 142, p. 106801. https://doi.org/10.1016/J.YMSSP.2020.106801

  77. Li, J., Lu, Y., and Lee, Y. F., Debonding detection in CFRP-reinforced steel structures using anti-symmetrical guided waves, Compos. Struct., 2020, vol. 253, p. 112813. https://doi.org/10.1016/j.compstruct.2020.112813

    Article  Google Scholar 

  78. Lee, Y.F., Lu, Y., and Guan, R., Nonlinear guided waves for fatigue crack evaluation in steel joints with digital image correlation validation, Smart Mater. Struct., 2020, vol. 29, no. 3, p. 035031. https://doi.org/10.1088/1361-665X/ab6fe7

    Article  CAS  Google Scholar 

  79. Alnuaimi, H., Amjad, U., Russo, P., Lopresto, V., and Kundu, T., Monitoring damage in composite plates from crack initiation to macro-crack propagation combining linear and nonlinear ultrasonic techniques, Struct. Health Monit., 2020. https://doi.org/10.1177/1475921720922922

  80. Weiland, J., Hesser, D. F., Xiong, W., Schiebahn, A., Markert, B., and Reisgen, U., Structural health monitoring of an adhesively bonded CFRP aircraft fuselage by ultrasonic Lamb Waves. Proceedings of the Institution of Mechanical Engineers, Part G, J. Aerosp. Eng., 2020. https://doi.org/10.1177/0954410020950511

  81. Lamb-Wave Based Structural Health Monitoring in Polymer Composites, Research Topics in Aerospace, Lammering, R. et al., Eds., Berlin: Springer, 2018. https://doi.org/10.1007/978-3-319-49715-0

  82. Mogil’ner, L.Yu., The use of a cylindrical reflector for adjusting the sensitivity during ultrasonic testing, Defectoskopiya, 2018, no. 7, pp. 27–36.

  83. Mogil’ner, L.Yu., Smorodinskii, Ya.G., Ultrasonic flaw detection: Adjustment and calibration of equipment using samples with cylindrical drilling, Russ. J. Nondestr. Test., 2018, vol. 54, no. 9, pp. 630–637.

    Article  Google Scholar 

  84. GOST 3722-2014. Rolling bearings. Steel balls. Technical conditions, Moscow: Standartinform, 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Borisov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iskhuzhin, R.R., Borisov, V.N., Atavin, V.G. et al. Ultrasonic Testing of Welds in Thin-Walled Titanium Shells Using an Incomplete Penetration Indicator. Russ J Nondestruct Test 57, 105–113 (2021). https://doi.org/10.1134/S1061830921020054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830921020054

Keywords:

Navigation