Skip to main content
Log in

Mathematical Models of Radiation Transparency of Test Objects When Using Sandwich X-Ray Radiation Detectors

  • RADIATION METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

A mathematical model of the output signals of an X-ray sandwich detector is presented. Based on this model, two mathematical models of the radiation transparency of the test object for a sandwich radiation detector have been developed. These models are the basis for a theoretical assessment of the accuracy of recognizing materials using the corresponding implementation scheme of the dual-energy method. The fundamental difference between the developed models is that one of them does and the other does not take into account statistical dependence between the output signals of the sandwich detector. Recommendations on the preference for using each of these models are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Rebuffel, V. and Dinten, J.M., Dual-energy X-ray imaging: benefits and limits, Insight Nondestr. Test. Cond. Monit., 2007, vol. 49, no. 10, pp. 589–594.

    Article  Google Scholar 

  2. Park, J.S. and Kim, J.K., Calculation of effective atomic number and normal density using a source weighting method in a dual energy X-ray inspection system, J. Korean Phys. Soc., 2011, vol. 59, no. 4, pp. 2709–2713.

    Article  CAS  Google Scholar 

  3. Duvillier, J., Dierick, M., Dhaene, J., Van Loo, D., Masschaele, B., Geurts, R., Hoorebeke, L.V., and Boone, M.N., Inline multi-material identification via energy radiographic measurements, NDT&E Int., vol. 94, pp. 120–125.

  4. Ogorodnikov, S.A., Linac-based recognition of materials during radiation customs control, Cand. Sci. (Eng.) Dissertation, St. Petersburg, 2002.

  5. Gavrish, Yu.N., Berdnikov, Ya.A., Spirin, D.O., Perederii, A.N., Safonov, M.V., and Romanov, I.V., Software complex for reconstruction of introscopic images using the dual-energy method, Probl. At. Sci. Technol., Ser.: Nucl. Phys. Invest. (54), 2010, no. 3, pp. 123–125.

  6. Gil, Y., Oh, Y., Cho, M., and Namkung, W., Radiography simulation on single-shot dual-spectrum X-ray for cargo inspection system, Appl. Radiat. Isot., 2011, vol. 69, no. 2, pp. 389–393.

    Article  CAS  Google Scholar 

  7. Osipov, S.P., Udod, V.A., and Wang, Y., Identification of materials in X-ray inspections of objects by the dual-energy method, Russ. J. Nondestr. Test., 2017, vol. 53, no. 8, pp. 568–587.

    Article  Google Scholar 

  8. Osipov, S.P., Usachev, E.Yu., Chakhlov, S.V., Shchetinkin, S.A., andd Kamysheva, E.N., Selecting parameters of detectors when recognizing materials based on the separation of soft and hard X-ray components, Russs. J. Nondestr. Test., 2018, vol. 54, no. 11, pp. 60–71.

    Google Scholar 

  9. Fredenberg, E., Spectral and dual-energy X-ray imaging for medical applications, Nucl. Instrum. Phys. Res.,Sect. A, 2018, vol. 878, pp. 74–87.

    CAS  Google Scholar 

  10. Ying Zhengrong, Naidu Ram, and Crawford, C.R., Dual energy computed tomography for explosive detection, J. X-Ray Sci. Technol., 2006, vol. 14, pp. 235-256.

    Google Scholar 

  11. Chang, S., Lee, H.K., Cho, G., Application of a dual-energy monochromatic x-ray CT algorithm to polychromatic x-ray CT: a feasibility study, Nucl. Eng. Technol., 2012, vol. 44, no.1, pp. 61–70.

    Article  CAS  Google Scholar 

  12. Iovea, M., Neagu, M., Duliu, O.G., Oaie, G., Szobotka, S., and Mateiasi, G., A dedicated on-board dual-energy computer tomograph, J. Nondestr. Eval., 2011, vol. 30, pp. 164–171.

    Article  Google Scholar 

  13. Alves, H., Lima, I., and Lopes, R.T., Methodology for attainment of density and effective atomic number through dual energy technique using microtomographic images, Appl. Radiat. Isot., 2014, vol. 89, pp. 6–12.

    Article  CAS  Google Scholar 

  14. Jia Hao, Kejun Kang, Li Zhang, and Zhiqiang Chen, A novel image optimization method for dual-energy computed tomography, Nucl. Instrum. Phys. Res.,Sect. A, 2013, vol. 722, pp. 34–42.

    CAS  Google Scholar 

  15. Svistunov, Yu.A., Vorogushin, M.F., Petrunin, V.I., Sidorov, A.V., Gavrishin, Yu.N., and Fialkovskii, A.M., Development of work on the creation of X-ray and nuclear-physical inspection complexes at the NIIEFA named after D.V. Efremov, Probl. At. Sci. Technol., 2006, no. 3, pp. 171–173.

  16. Chen Xue Liang, Chen Li, Huo Mei Chun, Yang Li Rui, Dong Ming Wen, Kong Wei Wu, Yang XiaoYue, Xue Kai, Li Yong Qing, Li Guang Qing, and Zhao Lei, Dual-energy X-ray body scanning device and image processing method. Eur. Patent Office Appl. no. 2458408, MPC G01V 5/00. Beijing Zhongdun Anmin Analysis Technology Co Ltd, First Res. Inst. Ministry of Public Security of PRC/no. 11167491; claimed May 25, 2011; publ. May 30, 2012.

  17. Udod, V.A., Osipov, S.P., and Wang, Y., Estimating the influence of quantum noises on the quality of material identification by the dual-energy method, Russ. J. Nondestr. Test., 2018, vol. 54, no. 8, pp. 50–65.

    Google Scholar 

  18. Udod, V.A., Osipov, S.P., and Wang, Y., The mathematical model of image, generated by scanning digital radiography system, IOP Conf. Ser.: Mater. Sci. Eng., IOP Publ., 2017, vol. 168, no. 1, article no. 012042.

  19. Rogers, T.W., Jaccard, N., and Griffin, L.D., A deep learning framework for the automated inspection of complex dual-energy x-ray cargo imagery, in Anomaly Detection and Imaging with X-Rays (ADIX) II/Int. Soc. Opt. Photonics, 2017, vol. 10187, article no. 101870L.

  20. Roessl, E. and Herrmann, C., Cramér–Rao lower bound of basis image noise in multiple-energy x-ray imaging, Phys. Med. Biol., 2009, vol. 54, no. 5, pp. 1307–1318.

    Article  CAS  Google Scholar 

  21. Korn, G. and Korn, T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov (Handbook of Mathematics for Scientists and Engineers), Moscow: Fizmatlit, Nauka, 1970.

  22. Ventsel’, E.S. and Ovcharov, L.A., Teoriya veroyatnostei i inzhenernye prilozheniya (Probability Theory and Engineering Applications), Moscow: Nauka, 1988.

  23. X-Ray Mass Attenuation Coefficients. https://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Udod, S. E. Vorobeichikov or S. Yu. Nazarenko.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udod, V.A., Vorobeichikov, S.E. & Nazarenko, S.Y. Mathematical Models of Radiation Transparency of Test Objects When Using Sandwich X-Ray Radiation Detectors. Russ J Nondestruct Test 56, 161–170 (2020). https://doi.org/10.1134/S1061830920020096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830920020096

Navigation