Skip to main content
Log in

Magnetoimpedance Properties of Amorphous CoFeSiB Wires in a Wide Frequency Range: Focus on Sensor Applications

  • Electromagnetic Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

The magnetic properties and specific features of giant magnetoimpedance in rapidquenched amorphous wires of composition (Co0.94 Fe0.06 )72.5Si12.5 B15 are investigated. The working interval and sensitivity to changes in an external quasistatic magnetic field have been calculated for the alternating current frequencies from 1 MHz to 1 GHz. Parameters that are optimum for using such wires as sensitive elements in magnetic field sensors have been calculated, and the probe sensitivity to the external magnetic field has been determined. A sensor prototype was designed that, when tested, confirmed the possibility of using the giant magnetoimpedance in sensors based on amorphous CoFeSiB wires for flaw detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Makhotkin V.E., Shurukhin B.P., Lopatin V.A., Marchukov P.Y., and Levin Y.K., Magnetic field sensors based on amorphous ribbons, Sens. Actuators A Phys., 1991, vol. 27, pp. 759–762.

    Article  Google Scholar 

  2. Mohri, K., Application of amorphous magnetic wires to computer peripherals, Mater. Sci. Eng., 1994, vol. 185, nos. 1–2, pp.141–145.

    Google Scholar 

  3. Kurlyandskaya, G.V., de Cos, D., and Volchkov, S.O., Magnetosensitive transducers for nondestructive testing operating on the basis of the giant magnetoimpedance effect: a review, Russ. J. Nondestr. Test., 2009, vol. 45, no. 6, pp. 377–398.

    Article  Google Scholar 

  4. Ping Wang, Yunlai Gao, GuiYun Tian, and Haitao Wang, Velocity effect analysis of dynamic magnetization in high speed magnetic flux leakage inspection, NDT & E Int., 2014, vol. 64, pp. 7–12.

    Article  Google Scholar 

  5. Chiriac, H., Herea, D.D., and Corodeanu, S., Microwire array for giant magnetoimpedance detection of magnetic particles for biosensor prototype, J. Magn. Magn. Mater., 2007, vol. 311, pp. 425–428.

    Article  Google Scholar 

  6. Kurlyandskaya, G.V. and Levit, V.I., Advanced materials for drug delivery and biosensors based on magnetic label detection, Mater. Sci. Eng. C, 2007, vol. 27, pp. 495–503.

    Article  Google Scholar 

  7. Panina, L.V., Mohri, K., Uchyama, T., and Noda, M., Giant magneto-impedance in Co-rich amorphous wires and films, IEEE Trans. Magn., 1995, vol. 31, no. 2, pp. 1249–1260.

    Article  Google Scholar 

  8. Mohri, K., Uchiyama, T., Panina, L.V., Yamamoto, M., and Bushida, K., Recent advances of amorphous wire CMOS IC magneto-impedance sensors: innovative high-performance micromagnetic sensor chip, J. Sens., 2015, Article ID 718069, pp. 1–8.

    Google Scholar 

  9. Landau, L.D., Lifshitz, E.M., and Pitaevskii, L.P., Electrodynamics of Continuous Media, Butterworth-Heinemann, 1984, 2nd Ed.

    Google Scholar 

  10. Beach, R.S. and Berkowitz, A.E., Giant magnetic field dependent impedance of amorphous FeCoSiB wire, Appl. Phys. Lett., 1994, vol. 64, pp. 3652–3654.

    Article  Google Scholar 

  11. Vazquez, M. and Hernando, A., A soft magnetic wire for sensor applications, J. Phys. D. Appl. Phys., 1996, vol. 29, pp. 939–949.

    Article  Google Scholar 

  12. Kurlyandskaya, G.V., Kammouni, R., Volchkov, S.O., Shcherbinin, S.V., and Larrañaga, A., Magnetoimpedance sensitive elements based on CuBe/FeCoNi electroplated wires in single and double wire configurations, IEEE Trans. Magn., 2017, vol. 53, no. 4, pp. 1–15.

    Article  Google Scholar 

  13. Chen, D.-X., Li, Y.-F., Pascual, L., Vazquez, M., and Hernando, A., Hysteresis loop shift in annealed FeCrSiB amorphous wires, J. Magn. Magn. Mater., 2000, vol. 212, pp. 373–380.

    Article  Google Scholar 

  14. Volchkov, S.O., Dukhan, A.E., Dukhan, E.I., and Kurlyandskaya, G.V., Computer-aided inspection center for magnetoimpedance spectroscopy, Russ. J. Nondestr. Test., 2016, vol. 52, no. 11, pp. 647–652.

    Article  Google Scholar 

  15. Shcherbinin, S.V., Volchkov, S.O., Lepalovskii, V.N., Chlenova, A.A., and Kurlyandskaya, G.V., System based on a ZVA-67 vector network analyzer for measuring high-frequency parameters of magnetic film structures, Russ. J. Nondestr. Test., 2017, vol. 53, no. 3, pp. 204–212.

    Article  Google Scholar 

  16. Kraus, L., GMI modeling and material optimization, Sens. Actuators, 2003, A. 106, pp. 187–194.

    Google Scholar 

  17. Hubert, A. and Schafer, R., Magnetic Domains, Berlin: Springer, 1998.

    Google Scholar 

  18. Panina, L.V., Mohri, K., Uchyama, T., and Noda, M., Giant magneto-impedance in Co-rich amorphous wires and films, IEEE Trans. Magn., 1995, vol. 31, no. 2.

    Google Scholar 

  19. Correa, M.A., Bohn, F., Chesman, C., da Silva, R.B., Viegas, A.D.C., and Sommer, R.L., Tailoring the magnetoimpedance effect of NiFe/Ag multilayer, J. Phys. D. Appl. Phys., 2010, vol. 43, pp. 295004–295007.

    Google Scholar 

  20. Fernández, E., Svalov, A.V., García-Arribas, A., Feuchtwanger, J., Barandiaran, J.M., and Kurlyandskaya, G.V., High performance magnetoimpedance in FeNi/Ti nanostructured multilayers with opened magnetic flux, J. Nanosci. Nanotechnol., 2012, vol.12, pp. 7496–7500.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Golubeva.

Additional information

Original Russian Text © E.V. Golubeva, S.O. Volchkov, S.V. Shcherbinin, G.V. Kurlyandskaya, 2018, published in Defektoskopiya, 2018, No. 10, pp. 42–50.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubeva, E.V., Volchkov, S.O., Shcherbinin, S.V. et al. Magnetoimpedance Properties of Amorphous CoFeSiB Wires in a Wide Frequency Range: Focus on Sensor Applications. Russ J Nondestruct Test 54, 717–725 (2018). https://doi.org/10.1134/S1061830918100066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830918100066

Keywords

Navigation