Skip to main content
Log in

Method of Finite Differences in Time Domain. Calculating Echo Signals in Anisotropic Inhomogeneous Materials, Pattern Noise

  • Acoustic Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

When developing ultrasonic testing techniques for such complex objects as composite welds, the method of finite differences in time domain (FDTD) can be used to calculate echo signals in numerical experiments. Since the FDTD method is based on explicit numerical solution of the wave equation for an elastic medium, it can be used to take account of such effects as the emergence of a run round wave on a volume reflector, the transformation of a longitudinal wave into a lateral one under scattering of ultrasound by a crack, and the rescattering of pulses between reflectors and test-object boundaries. Applying the FDTD method to modeling the propagation of ultrasound in the sample with a high pattern noise and in the samples made of anisotropic inhomogeneous materials is substantiated. The FDTD calculation of the direct problem of propagation of elastic vibrations in a solid may prove useful when solving the inverse problem of ultrasonic nondestructive testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bazulin, E.G., Konovalov, D.A., and Sadykov, M.S., Finite-difference time domain method. Calculating echo signals in homogeneous isotropic materials, Russ. J. Nondestr. Test., 2018, vol. 54, no.7.

    Google Scholar 

  2. Chatillon, S., Fidahoussen, A., Iakovleva, E., and Calmon, P., Time of flight inverse matching reconstruction of ultrasonic array data exploiting forwards models, 6th Int. Workshop. NDT Signal Process., August 25–27, 2009, London, Ontario, Canada.

  3. Bazulin, E.G. Vopilkin, A.Kh., and Tikhonov, D.S., Improving the reliability of ultrasonic testing. Part 1. Determining the type of a discontinuity in ultrasonic testing with antenna arrays, Kontrol’. Diagn., 2015, no. 8, pp. 7–22.

    Article  Google Scholar 

  4. Leger A. and Deschamps, M. (Eds.), Ultrasonic wave propagation in nonhomogeneous media, Ser: Springer Proc. Phys., 2009, vol. 128. X, p. 435. doi 10.1007/978-3-540-89105-510.1007/978-3-540-89105-5

  5. Connolly, G.D., Modeling of the Propagation of Ultrasound Through Austenitic Steel Welds, UK Res. Centre NDE (RCNDE), Dep. Mech. Eng., Imperial College, London, 2009, p.206.

    Google Scholar 

  6. Gardahaut, A., Jezzine, K., Cassereau, D., Leymarie N., and Iakovleva, E., Advanced simulation of ultrasonic inspection of welds using Dynamic Ray Tracing, 13th Int. Symp. Nondestr. Charact. Mater. (NDCM-XIII), 2013, Le Mans, France.

    Google Scholar 

  7. Schallert, R., Heilmann, P., Scholz, H., Schubert, F., Barth M., and Fröhlich, M., Phased array techniques for an optimized inspection of dissimilar welds, in DGZfP-Jahrestagung, 2011. URL: https://doi.org/www.ndt.net/article/dgzfp2011/papers/mo2a4.pdf. Cited December 1, 2015.

    Google Scholar 

  8. Bazulin, E.G., Allowing for inhomogeneous anisotropy of a welded joint when reconstructing reflector images from echo signals received by an ultrasonic antenna array, Russ. J. Nondestr. Test., 2017, vol. 53, no. 1, pp. 9–22.

    Article  Google Scholar 

  9. Kachanov, V.K., Kartashev, V.G., and Sokolov, I.V., Ul’trazvukovaya pomekhoustoichivaya defektoskopiya (Ultrasonic Noise-Proof Flaw Detection), Moscow: Moscow Power Eng. Inst., 2007.

    Google Scholar 

  10. Bazulin, E.G. Vopilkin, A.Kh., and Tikhonov, D.S., Improving the reliability of ultrasonic testing. Part 2. Increasing signal-to-noise ratio, Kontrol’. Diagn., 2015, no. 9, pp.10–27.

    Article  Google Scholar 

  11. Goncharsky, A.V., Romanov, S.Yu., and Seryozhnikov, S.Yu., Superkomp’yuternye tekhnologii v zadachakh proektirovaniya tomograficheskikh diagnosticheskikh kompleksov (Supercomputer Technologies in Design Problems of Tomographic Diagnostic Complexes), St. Petersburg: St. Petersburg State Univ., 2016.

    Google Scholar 

  12. Goncharsky, A.V., Romanov, S.Yu., and Seryozhnikov, S.Yu., Inverse problems of layered ultrasonic tomography with data on a cylindrical surface, Vychisl. Metody Program. Nov. Vychisl. Tekhnol., 2017, vol. 18, pp. 267–276.

    Google Scholar 

  13. Goncharsky, A. and Seryozhnikov, S., The architecture of specialized GPU clusters used for solving the inverse problems of 3D low-frequency ultrasonic Tomography, in Supercomputing, Voevodin, V. and Sobolev, S., Eds., Comm. Comp. Inf. Sci., Springer, Cham., 2017, vol. 793, pp. 363–375. doi 10.1007/978-3-319-71255-0_2910.1007/978-3-319-71255-0_29

    Article  Google Scholar 

  14. Ogilvy, J.A., Ultrasonics beam profiles and beam propagation in austenitic weld using a theoretical ray tracing model, Ultrasonics, 1986, no. 11, pp. 337–347.

    Article  Google Scholar 

  15. Prager, J., Boehm, R., and Höhne, C., SAFT-Rekonstruktion für die Querfehlerprüfung in austenitischen Schweiβnähten und Mischnähten. URL: https://doi.org/www.ndt.net/article/dgzfp-ut-bild-2013/vortrag15.pdf. Cited September 30, 2017.

    Google Scholar 

  16. Aurenhammer, F., Voronoi diagrams—a survey of a fundamental geometric data structure, ACM Comput. Surv., 1991, vol. 23, no. 3, pp. 345–405.

    Article  Google Scholar 

  17. Murav’ev, V.V., Murav’eva, O.V., Baiteryakov, A.V., and Dedov, A.I., A technique for determining acoustic pattern noise in a metal, Intellektual’nye Sist. Proizvod., 2013, no. 1, pp. 143–148.

    Google Scholar 

  18. Rose, J., Ultrasonic backscattering from polycrystalline aggregates using time-domain linear response theory, in Rev. Prog. Quant. Nondestr. Eval., Thompson, D.O. and Chimenti, E., Eds., New York: Plenum, 1991, vol. 10, pp. 1715–1720.

    Article  Google Scholar 

  19. Bowyer, W.H. and Crocker, R.L., Modeling of Attenuation and Scattering of Ultrasound in Polycrystalline Copper, Norstedts Tryckeri AB, January 1997, SKI Order no. 95062.

    Google Scholar 

  20. Courant R., Friedrichs KO, Levy G. On difference equations of mathematical physics. Usp. Mat. Nauk, 1941, no. 8, pp. 125–160.

    Google Scholar 

  21. Tekhnologiya NVIDIA CUDA™ (NVIDIA CUDA™ Technology). URL: https://doi.org/www.nvidia.ru/object/cudaparallel-computing-ru.html. Cited September 30, 2017.

  22. Programma rascheta elektromagnitnykh polei metodom FDTD (The Program for Calculating Electromagnetic Fields by the FDTD Method). URL: https://doi.org/zfdtd.narod.ru/. Cited September 30, 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Bazulin.

Additional information

Original Russian Text © E.G. Bazulin, D.A. Konovalov, M.S. Sadykov, 2018, published in Defektoskopiya, 2018, No. 8, pp. 3–10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazulin, E.G., Konovalov, D.A. & Sadykov, M.S. Method of Finite Differences in Time Domain. Calculating Echo Signals in Anisotropic Inhomogeneous Materials, Pattern Noise. Russ J Nondestruct Test 54, 539–545 (2018). https://doi.org/10.1134/S1061830918080028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830918080028

Keywords

Navigation