Skip to main content
Log in

A three-dimensional analysis of natural vibrations of rectangular piezoelectric transducers

  • Acoustic Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

A computer program for the three-dimensional analysis of natural vibrations of rectangular piezoelectric transducers of arbitrary dimensions has been developed on the basis of the finite-element method (FEM). The analysis of natural vibrations of transducers was performed for several first modes. The results make it possible to substantiate the choice of the optimal geometric dimensions for a rectangular piezoelectric transducer that operates in the first mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ul’trazvukovye p’ezopreobrazovateli dlya nerazrushayushchego kontrolya (Ultrasonic Piezoelectric Transducers for Nondestructive Testing), Ermolov, I.N, Ed., Moscow: Mashinostroenie, 1986.

    Google Scholar 

  2. Danilov, V.N. and Ermolov, I.N., Estimation of the length of the near zone of a rectangular transducer, Russ. J. Nondestr. Test., 2003, vol. 39, no. 5, pp. 333–338.

    Article  Google Scholar 

  3. Danilov, V.N., Calculation of the acoustic field of a direct transducer with piezoelectric plates of different shapes, Russ. J. Nondestr. Test., 2004, vol. 40, no. 2, pp. 79–86.

    Article  Google Scholar 

  4. Danilov, V.N., On calculation of DGS diagrams for a normal transducer with a rectangular piezoelectric plate and reflectors in the form of circular flat-bottom holes, Russ. J. Nondestr. Test., 2010, vol. 46, no. 2, pp. 112–118.

    Article  Google Scholar 

  5. Fizicheskaya akustika (Physical Acoustics), Mezon, U., Ed., Moscow: Mir, 1966, vol. 1.

    Google Scholar 

  6. Holland, R., Resonant properties of piezoelectric ceramic rectangular parallelepipeds, J. Acoust. Soc. Am., 1968, vol. 43, no. 5, pp. 988–997.

    Article  Google Scholar 

  7. Holland, R., Contour extensional resonant properties of rectangular piezoelectric plates, IEEE Trans. Sonics Ultrason., 1968, vol. 15, no. 2, pp. 97–105.

    Article  Google Scholar 

  8. Holland, R. and Eer Nisse, E.P., Design of resonant piezoelectric devices, Cambridge: The M.I.T. Press, 1969.

    Google Scholar 

  9. Allik, H. and Hughes, T. J. R., Finite element method for piezoelectric vibration, Int. J. Numer. Meth. Engng, 1970, vol. 2, no. 2, pp. 151–157.

    Article  Google Scholar 

  10. Allik, H., Webman, K.M., and Hunt, J.T., Vibrational response of sonar transducers using piezoelectric finite elements, J. Acoust. Soc. Am., 1974, vol. 56, no. 6, pp. 1782–1791.

    Article  Google Scholar 

  11. Kagawa, Y. and Gladwell, G.M.L., Finite element analysis of flexure-type vibrators with electrostrictive transducers, IEEE Trans. Sonics Ultrason., 1970, vol. 17, no. 1, pp. 41–49.

    Article  Google Scholar 

  12. Kagawa, Y. and Yamabuchi, T., Finite element approach for a piezoelectric circular rod, IEEE Trans. Sonics Ultrason., 1976, vol. 23, no. 6, pp. 379–385.

    Article  Google Scholar 

  13. Kagawa, Y. and Yamabuchi, T., Finite element simulation of a composite piezoelectric ultrasonic transducer, IEEE Trans. Sonics Ultrason., 1979, vol. 26, no. 2, pp. 81–88.

    Article  Google Scholar 

  14. Zenkevich, O., Metod konechnykh elementov v tekhnike (Finite Element Method in Engineering), Moscow: Mir, 1975.

    Google Scholar 

  15. Boucher, D., Lagier, M., and Maerfeld, C., Computation of the vibrational modes for piezoelectric array transducers using a mixed finite element-perturbation method, IEEE Trans. Sonics Ultrason., 1981, vol. 28, no. 5, pp. 318–330.

    Article  Google Scholar 

  16. McDearmon, G.F., The addition of piezoelectric properties to structural finite element programms by matrix manipulation, J. Acoust. Soc. Am., 1984, vol. 76, no. 3, pp. 666–669.

    Article  Google Scholar 

  17. Balabaev, S.M. and Ivina, N.F., Komp’yuternoe modelirovanie kolebanii i izlucheniya tel konechnykh razmerov (metody konechnykh i granichnykh elementov) (Computer Simulation of Vibrations and Radiation of Bodies of Finite Dimensions (Finite and Boundary Element Methods)), Vladivostok: Dal’nauka, 1996.

    Google Scholar 

  18. Balabaev, S.M. and Ivina, N.F., Komp’yuternoe modelirovanie i analiz sobstvennykh kolebanii p’ezopreobrazovatelei metodom konechnykh elementov (Computer Simulation and Analysis of Natural Vibrations of Piezoelectric Transducers by Finite Element Method), Vladivostok: Dal’rybvtuz, 2007.

    Google Scholar 

  19. Balabaev, S.M. and Ivina, N.F., Analysis of natural vibrations of piezoceramic cylinders of arbitrary dimensions, Int. Appl. Mech., 1989, vol. 25, no. 10, pp. 989–993.

    Google Scholar 

  20. Ivina, N.F., Numerical analysis of natural vibrations of circular piezoceramic plates of finite dimensions, Akust. Zh., 1989, vol. 35, no. 4, pp. 667–673.

    Google Scholar 

  21. Ivina, N.F. and Balabaev, S.M., Characteristic vibrational modes of piezoceramic plates with variable thicknesses, Russ. J. Nondestr. Test., 2001, vol. 37, no. 1, pp. 37–43.

    Article  Google Scholar 

  22. P’ezokeramicheskie preobrazovateli (Piezoelectric Ceramic Transducers), Pugachev, S.I, Ed., Leningrad: Sudostroenie, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Balabaev.

Additional information

Original Russian Text © S.M. Balabaev, N.F. Ivina, 2014, published in Defektoskopiya, 2014, Vol. 50, No. 10, pp. 61–65.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balabaev, S.M., Ivina, N.F. A three-dimensional analysis of natural vibrations of rectangular piezoelectric transducers. Russ J Nondestruct Test 50, 602–606 (2014). https://doi.org/10.1134/S1061830914100027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830914100027

Keywords

Navigation