Skip to main content
Log in

A Fusion Based Approach for Blood Vessel Segmentation from Fundus Images by Separating Brighter Optic Disc

  • APPLICATION PROBLEMS
  • Published:
Pattern Recognition and Image Analysis Aims and scope Submit manuscript

Abstract—

In ophthalmology, blood vessel segmentation from fundus images plays a significant role in automated retinal disease screening systems. Several research papers on blood vessel segmentation suggest enhancing fundus images before segmentation significantly to improve performance. The brightness of the optic disc region in a fundus image negatively influences the enhancement of relatively darker vessel pixels. Segregation of brighter optic disc from fundus images before its enhancement is the fundamental idea behind developing the proposed framework. Initially, the optic disc is extracted from the input fundus image to form two images, one containing optical disc and the other, fundus image without optical disk. In the second stage, both the images are enhanced independently, followed by blood vessel segmentation. Finally, the segmented blood vessels from the images are fused to obtain a single image. Experiments conducted with fundus images from DRIVE, STARE, and CHASE_DB1 databases show improvement in the identification of blood vessel pixels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. P. T. Akkasaligar and S. Biradar, “Automatic segmentation and analysis of renal calculi in medical ultrasound images,” Pattern Recognit. Image Anal. 30, 748–756 (2020). https://doi.org/10.1134/S1054661820040021

    Article  Google Scholar 

  2. F. Argüello, D. L. Vilariño, D. B. Heras, and A. Nieto, “GPU-based segmentation of retinal blood vessels,” J. Real-Time Image Process. 14, 773–782 (2014). https://doi.org/10.1007/s11554-014-0469-z

    Article  Google Scholar 

  3. B. Biswal, T. Pooja, and N. Bala Subrahmanyam, “Robust retinal blood vessel segmentation using line detectors with multiple masks,” IET Image Process. 12, 389–399 (2018). https://doi.org/10.1049/iet-ipr.2017.0329

    Article  Google Scholar 

  4. A. Budai, R. Bock, A. Maier, J. Hornegger, and G. Michelson, “Robust vessel segmentation in fundus images,” Int. J. Biomed. Imaging 2013, 154860 (2013). https://doi.org/10.1155/2013/154860

    Article  Google Scholar 

  5. L. Câmara Neto, G. L. B. Ramalho, J. F. S. Rocha Neto, R. M. S. Veras, and F. N. S. Medeiros, “An unsupervised coarse-to-fine algorithm for blood vessel segmentation in fundus images,” Expert Syst. Appl. 78, 182–192 (2017). https://doi.org/10.1016/j.eswa.2017.02.015

    Article  Google Scholar 

  6. S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum, “Detection of blood vessels in retinal images using two-dimensional matched filters,” IEEE Trans. Med. Imaging 8, 263–269 (1989). https://doi.org/10.1109/42.34715

    Article  Google Scholar 

  7. T. Coye, “A novel retinal blood vessel segmentation algorithm for fundus images,” MATLAB Central File Exchange, 2015. http://www.mathworks.com/matlabcentral/ fileexchange/50839. Cited August 8, 2019.

  8. P. Dai et al., “A new approach to segment both main and peripheral retinal vessels based on gray-voting and Gaussian mixture model,” PLoS One 10, e0127748 (2015). https://doi.org/10.1371/journal.pone.0127748

    Article  Google Scholar 

  9. J. Dash and N. Bhoi, “A thresholding based technique to extract retinal blood vessels from fundus images,” Future Comput. Inf. J. 2, 103–109 (2017). https://doi.org/10.1016/j.fcij.2017.10.001

    Article  Google Scholar 

  10. J. Dash and N. Bhoi, “An unsupervised approach for extraction of blood vessels from fundus images,” J. Digit. Imaging 31, 857–868 (2018). https://doi.org/10.1007/s10278-018-0059-x

    Article  Google Scholar 

  11. M. M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. R. Rudnicka, C. G. Owen, and S. A. Barman, “Blood vessel segmentation methodologies in retinal images: A survey,” Comput. Methods Programs Biomed. 108, 407–433 (2012). https://doi.org/10.1016/j.cmpb.2012.03.009

    Article  Google Scholar 

  12. A. Hoover, “Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response,” IEEE Trans. Med. Imaging 19, 203–210 (2000). https://doi.org/10.1109/42.845178

    Article  Google Scholar 

  13. Z. Jiang, J. Yepez, S. An, and S. Ko, “Fast, accurate and robust retinal vessel segmentation system,” Biocybern. Biomed. Eng. 37, 412–421 (2017). https://doi.org/10.1016/j.bbe.2017.04.001

    Article  Google Scholar 

  14. K. Jiang, Z. Zhou, X. Geng, X. Zhang, L. Tang, H. Wu, and J. Dong, “Isotropic undecimated wavelet transform fuzzy algorithm for retinal blood vessel segmentation,” J. Med. Imaging Heal. Inf. 5, 1524–1527 (2015). https://doi.org/10.1166/jmihi.2015.1561

    Article  Google Scholar 

  15. Q. Jin, Q. Chen, Z. Meng, B. Wang, and R. Su, “Construction of retinal vessel segmentation models based on convolutional neural network,” Neural Process. Lett. 52, 1005–1022 (2020). https://doi.org/10.1007/s11063-019-10011-1

    Article  Google Scholar 

  16. K. B. Khan, A. A. Khaliq, A. Jalil, M. A. Iftikhar, N. Ullah, M. W. Aziz, K. Ullah, and M. Shahid, “A review of retinal blood vessels extraction techniques: challenges, taxonomy, and future trends,” Pattern Anal. Appl. 22, 767–802 (2018). https://doi.org/10.1007/s10044-018-0754-8

    Article  MathSciNet  Google Scholar 

  17. D. Koukounis, C. Ttofis, A. Papadopoulos, and T. Theocharides, “A high performance hardware architecture for portable, low-power retinal vessel segmentation,” Integration 47, 377–386 (2014). https://doi.org/10.1016/j.vlsi.2013.11.005

    Article  Google Scholar 

  18. P. Liskowski and K. Krawiec, “Segmenting retinal blood vessels with deep neural networks,” IEEE Trans. Med. Imaging 35, 2369–2380 (2016). https://doi.org/10.1109/TMI.2016.2546227

    Article  Google Scholar 

  19. C.-Y. Lu, B.-Z. Jing, P. P. K. Chan, D. Xiang, W. Xie, J. Wang, and D. S. Yeung, “Vessel enhancement of low quality fundus image using mathematical morphology and combination of Gabor and matched filter,” in Int. Conf. on Wavelet Analysis and Pattern Recognition (ICWAPR), Jeju, Korea (South), 2016 (IEEE, 2016), pp. 168–173. https://doi.org/10.1109/ICWAPR.2016.7731638

  20. S. Moccia, E. De Momi, S. El Hadji, and L. S. Mattos, “Blood vessel segmentation algorithms — Review of methods, datasets and evaluation metrics,” Comput. Methods Programs Biomed. 158, 71–91 (2018). https://doi.org/10.1016/j.cmpb.2018.02.001

    Article  Google Scholar 

  21. W. S. Oliveira, J. V. Teixeira, T. I. Ren, G. D. C. Cavalcanti, and J. Sijbers, “Unsupervised retinal vessel segmentation using combined filters,” PLoS One 11, e0149943 (2016). https://doi.org/10.1371/journal.pone.0149943

    Article  Google Scholar 

  22. J. I. Orlando, E. Prokofyeva, and M. B. Blaschko, “A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images,” IEEE Trans. Biomed. Eng. 64, 16–27 (2017). https://doi.org/10.1109/TBME.2016.2535311

    Article  Google Scholar 

  23. C. G. Owen, A. R. Rudnicka, R. Mullen, S. A. Barman, D. Monekosso, P. H. Whincup, J. Ng, and C. Paterson, “Measuring retinal vessel tortuosity in 10-year-old children: Validation of the computer-assisted image analysis of the retina (caiar) program,” Investig. Ophthalmol. Visual Sci. 50, 2004–2010 (2009). https://doi.org/10.1167/iovs.08-3018

    Article  Google Scholar 

  24. S. Pal, S. Chatterjee, D. Dey, and S. Munshi, “Morphological operations with iterative rotation of structuring elements for segmentation of retinal vessel structures,” Multidim. Syst. Signal Process. 30, 373–389, 2019. https://doi.org/10.1007/s11045-018-0561-9

    Article  MATH  Google Scholar 

  25. D. Pandey, X. Yin, H. Wang, and Y. Zhang, “Accurate vessel segmentation using maximum entropy incorporating line detection and phase-preserving denoising,” Comput. Vis. Image Understanding 155, 162–172 (2017). https://doi.org/10.1016/j.cviu.2016.12.005

    Article  Google Scholar 

  26. N. Panwar, P. Huang, J. Lee, P. A. Keane, T. S. Chuan, A. Richhariya, S. Teoh, T. H. Lim, and R. Agrawal, “Fundus photography in the 21st century—A Review of recent technological advances and their implications for worldwide healthcare,” Telemed. e-Health 22, 198–208 (2016). https://doi.org/10.1089/tmj.2015.0068

  27. A. E. Rad, M. S. Mohd Rahim, H. Kolivand, and I. Bin Mat Amin, “Morphological region-based initial contour algorithm for level set methods in image segmentation,” Multimed. Tools Appl. 76, 2185–2201 (2017). https://doi.org/10.1007/s11042-015-3196-y

    Article  Google Scholar 

  28. C. Raja and L. Balaji, “An automatic detection of blood vessel in retinal images using convolution neural network for diabetic retinopathy detection,” Pattern Recognit Image Anal. 29, 533–545 (2019). https://doi.org/10.1134/S1054661819030180

    Article  Google Scholar 

  29. S. P. Rajan, “Recognition of cardiovascular diseases through retinal images using optic cup to optic disc ratio,” Pattern Recognit Image Anal. 30, 256–263 (2020). https://doi.org/10.1134/S105466182002011X

    Article  Google Scholar 

  30. J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. Van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Trans. Med. Imaging 23, 501–509 (2004). https://doi.org/10.1109/TMI.2004.825627

    Article  Google Scholar 

  31. F. F. Wahid and G. Raju, “An efficient preprocessing step for retinal vessel segmentation via optic nerve head exclusion,” in Advances in Computing and Data Sciences. ICACDS 2019, Ed. by M. Singh, P. Gupta, V. Tyagi, J. Flusser, T. Ören, and R. Kashyap, Communications in Computer and Information Science, vol. 1046 (Springer, Singapore, 2019), pp. 228–239. https://doi.org/10.1007/978-981-13-9942-8_22

  32. T. Walter, P. Massin, A. Erginay, R. Ordonez, C. Jeulin, and J.-C. Klein, “Automatic detection of microaneurysms in color fundus images,” Med. Image Anal. 11, 555–556 (2007). https://doi.org/10.1016/j.media.2007.05.001

    Article  Google Scholar 

  33. H. Wang, Y. Jiang, X. Jiang, J. Wu, and X. Yang, “Automatic vessel segmentation on fundus images using vessel filtering and fuzzy entropy,” Soft Comput. 22, 1501–1509 (2018). https://doi.org/10.1007/s00500-017-2872-4

    Article  Google Scholar 

  34. C. M. Wilson, K. D. Cocker, M. J. Moseley, C. Paterson, S. T. Clay, W. E. Schulenburg, M. D. Mills, K. H. Parker, G. E. Quinn, A. R. Fielder, and J. Ng, “Computerized analysis of retinal vessel width and tortuosity in premature infants,” Invest. Ophthalmol. Visual Sci. 49, 3577–3585 (2008). https://doi.org/10.1167/iovs.07-1353

    Article  Google Scholar 

  35. L. Zhou, Q. Yu, X. Xu, Y. Gu, and J. Yang, “Improving dense conditional random field for retinal vessel segmentation by discriminative feature learning and thin-vessel enhancement,” Comput. Methods Programs Biomed. 148, 13–25 (2017). https://doi.org/10.1016/j.cmpb.2017.06.016

    Article  Google Scholar 

  36. C. Zhu, B. Zou, Y. Xiang, and J. Cui, “An ensemble retinal vessel segmentation based on supervised learning in fundus images,” Chin. J. Electron. 25, 503–511 (2016). https://doi.org/10.1049/cje.2016.05.016

    Article  Google Scholar 

  37. C. Zhu, B. Zou, R. Zhao, J. Cui, X. Duan, Z. Chen, and Y. Liang, “Retinal vessel segmentation in colour fundus images using Extreme Learning Machine,” Comput. Med. Imaging Graphics 55, 68–77 (2017). https://doi.org/10.1016/j.compmedimag.2016.05.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farha Fatina Wahid, K. Sugandhi or G. Raju.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article is a completely original work of its authors; it has not been published before and will not be sent to other publications until the PRIA Editorial Board decides not to accept it for publication.

Conflict of Interest

The process of writing and the content of the article does not give grounds for raising the issue of a conflict of interest.

Additional information

Farha Fatina Wahid Received a Master’s in Computer Application and PhD in Computer Science from Kannur University, Kerala, India. Her research interests are in medical image processing, high-performance computing, and machine learning.

K. Sugandhi received a Master’s in Computer Science from the Central University of Kerala (2013), MPhil (2014), and PhD in Computer Science (2021) from the Kannur University, Kerala, India. Her research interests are in image and video processing, machine learning, and high-performance computing.

Dr. G. Raju is currently working in the Department of Computer Science and Engineering, Christ (Deemed to Be University), Bengaluru. He obtained his Master’s and Doctoral degrees from the University of Kerala, India. His area of research includes Image Processing, Computer Vision, Machine Learning, and Data Science. He has 29 years of teaching and 20 years of research experience. He has more than 100 publications to his credit and guided 22 PhD Scholars.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahid, F.F., Sugandhi, K. & Raju, G. A Fusion Based Approach for Blood Vessel Segmentation from Fundus Images by Separating Brighter Optic Disc. Pattern Recognit. Image Anal. 31, 811–820 (2021). https://doi.org/10.1134/S105466182104026X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S105466182104026X

Keywords:

Navigation